Новые транспортные двигатели

Первые два способа обеспечивают устойчивую работу двигателя лишь совместно с такими мероприятиями как частичная рециркуляция ОГ, присадка воды к топливному заряду, а также добавка к нему бензина.

Рис.3.Устройства для дозирования водорода под впускной клапан.

Частичная рециркуляция ОГ за счет разбавления заряда инерт

ными компонентами предотвращает обратные вспышки и смягчает сгорания при работе двигателя на стехиометрических и богатых смесях. Количество рециркулируемых газов, как правило, не превышает 10-20% от поступающего в двигатель топливного заряда, однако любая степень рециркуляции ведет к дополнительным потерям наполнения цилиндра. В отличие от рециркуляции ОГ добавление воды или бензина (обычно впрыском во впускной трубопровод) не приводит к ухудшению наполнения двигателя.

Типичные два варианта индивидуального дозирования водорода показаны на рис.3. В конструкции (рис. 3,а) подача Н2 в камеру сгорания происходит следующим образом. На такте всасывания впускной клапан открывается, освобождая тем самым расходные отверстия трубопроводов 4, подающих водород [ ]. Под действием разряжения в цилиндре водород всасывается в камеру сгорания. Так как в системе впуска отсутствуют дросселирующие участки, величины разряжения при впуске будут несколько снижены, благодаря чему снижается количество масла, засасываемого через поршневые кольца в камеру сгорания и сгорающего вместе с топливом. Это приводит к уменьшению вредных выбросов ДВС, особенно при старении двигателя и износе поршневых колец. По другому варианту конструкции (рис.3,б) дозирующее устройство обеспечивает впрыск водорода непосредственно на впускной клапан 3 [ ]. Центральный поршенек 2 поддерживается в постоянном контакте с поверхностью впускного клапана посредством легкой пружины 1 и давления газа, которое составляет примерно 0,1 МПа. Устройство отрегулировано таким образом, что отверстия для впуска Н2 открываются позже впускного клапана 3, а закрываются раньше, при этом время их открытия соответствует половине времени открытия впускного клапана.

Наилучшие результаты дает организация впрыска водорода непосредственно в камеру сгорания. При этом полностью исключаются обратные вспышки во впускном трубопроводе, а максимальная мощность не только не снижается, но даже может быть повышена на 10-15% [ ].

Использование водорода в дизельных двигателях затрудняется его высокой температурой самовоспламенения. Поэтому для организации устойчивого воспламенения водорода дизели конвертируются в двигатели с принудительным зажиганием от свечи или запальной дозы жидкого топлива. При этом водород может подаваться как совместно с воздухом, так и путем непосредственного впрыска в цилиндры. Однако устойчивая работа дизеля на водороде обеспечивается только в узком диапазоне топливных смесей, ограниченном пропусками воспламенения и детонацией. В случае газожидкостного процесса граница детонации (см. рис.4) определяется составом смеси и ее температурой [ ]. Повышение дозы запального топлива улучшает антидетонационную стойкость смеси и в то же время расширяет границы воспламенения. Поэтому нормальная работа водородного дизеля возможна только при строго определенном минимальном расходе запального топлива, определяемом режимом работы и составом смеси.

Следует отметить, что при работе ДВС на водороде значительно уменьшается выделение твердых частиц примерно в 1000 раз по сравнению с бензином. Благодаря этому, а также отсутствию органических кислот, образующихся при сжигании углеводородов, увеличивается срок службы двигателя и сокращаются затраты на его ремонт.

Рис.4. Границы устойчивой работы дизельного двигателя на водороде:

1-детонация; 2-воспламенение.

3.2. Работа ДВС на чистом водороде.

Согласно результатам, полученным при индицировании одноцилиндрового двигателя, работающего на водороде, при обеднении топливной смеси динамика нарастания давления резко падает, а при значениях б>3,5 остается практически постоянной. Напротив, величина задержки воспламенения растет, главным образом, за счет увеличения времени саморазгона реакций сгорания при уменьшении концентрации водорода в топливной смеси. В связи с этим при б>1,8 появляются колебания максимального давления в цикле, которые при б>4,5 приводят к неустойчивой работе водородного двигателя. Неустойчивость также имеет место при обогащении топливо-воздушной смеси, однако обусловливается в этом случае чрезмерно высокими скоростями нарастания давления при сгорании. Подобное неустойчивое сгорание обычно связано со слышимыми «стуками» и мгновенными колебаниями скорости вращения вала двигателя.

Особо следует остановиться на явлениях преждевременного воспламенения и обратных вспышек во впускном трубопроводе водородного двигателя. Причинами преждевременного воспламенения могут быть перегрев источника зажигания, масляный нагар, а также индуктивные наводки в проводах и других элементах системы зажигания. Обратные вспышки - характерный недостаток большинства систем дозирования водорода во впускной трубопровод. Они происходят на такте впуска вследствие воспламенения водородо-воздушной смеси от отдельных перегретых точек свечи зажигания, а также от горячих остаточных газов. Снижение частоты появления обратных вспышек может быть достигнуто посредством увеличения степени сжатия ( с целью уменьшения количества остаточных газов) или установкой специальной свечи зажигания. При использовании обычной свечи зажигания водородный двигатель устойчиво работает в очень узком диапазоне изменения б, тогда как модифицированная свеча зажигания обеспечивает его нормальную работу, начиная с б=1,55. Что касается показателей работы двигателя на соответствующих режимах, то они практически идентичны на обоих типах свечей.

При дозировании водорода во впускной трубопровод сгорание топливных смесей вблизи стехиометрического состава происходит с очень высокими скоростями и практически без задержки воспламенения. Кроме того, в этой области имеется тенденция к преждевременному воспламенению. В результате указанные факторы приводят к остановке водородного двигателя при обогащении топливной смеси. Характерно, что на оборотах ниже примерно 0,7 от номинальных двигатель останавливается без появления обратных вспышек. Причиной остановки двигателя в этом случае является раннее завершение процесса сгорания, вследствие чего работа газа на ходе сжатия получается больше, чем на ходе расширения. С другой стороны, при оборотах двигателя, близких к номинальным, возможно обогащение топливной смеси вплоть до б=1. Однако дальнейшее обогащение топливного заряда в этих условиях приводит к появлению обратных вспышек и остановке двигателя, что связано с перегревом элементов камеры сгорания, ведущим к преждевременному воспламенению водородо-воздушной смеси.

Для получения удовлетворительных мощностных показателей водородного двигателя, а следовательно, обеспечения его устойчивой работы в области б≤1, в первую очередь необходимо снизить температурную напряженность рабочего цикла. С этой целью целесообразно увеличивать рабочий объем цилиндров двигателя, что, в частности, позволяет предотвратить самовоспламенение благодаря снижению температуры стенок цилиндров. Хорошие результаты дают охлаждение зоны выпускного клапана, а также использование «холодной» свечи зажигания, снижающие тенденции водородных двигателей к детонации при работе на стехиометрических смесях. Однако наилучшие показатели двигателя обеспечиваются при использовании управляемой подачи (впрыска) водорода непосредственно в камеру сгорания. Помимо полного устранения обратных вспышек и преждевременного воспламенения смеси, при этом обеспечиваются более приемлемые скорости нарастания давления в цикле даже в области стехиометрических соотношений.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы