Новые транспортные двигатели

Электромотор питается от буферного накопителя энергии, который ее тоже откуда – то должен получать. Идея подзарядки от общей сети потихоньку сошла на нет (по крайней мере, этот способ надо комбинировать с другими). Действительно, непрактично через каждые 100 км по нескольку часов заправляться. Инженеры пришли к тому, что на борту нужна маленькая электростанция. Электричество для подзарядки може

т, например, вырабатывать дизельный или обычный двигатель (на чём угодно: газе, бензине, водороде и пр.). Общий КПД такого гибридного автомобиля увеличивается примерно до 30% (соответственно снижается расход топлива), а объём вредных выбросов, при условии, что есть нейтрализатор, позволяет уложиться в европейские нормы, действующие с 2005 года, с десятикратным запасом. И всё же выхлоп «zero» можно получить только у третьего типа автомобилей.

Настоящий водородный автомобиль – это машина с электродвигателем, который питается от топливного элемента, расположенного на борту автомобиля. Пока самые эффективные и экологические топливные элементы - водородные (после окисления водород даёт только воду), на основе твердого полимерного электролита. Теоретически эффективность (КПД) топливного элемента, работающего на смеси водород – воздух, может быть больше 85%. Сейчас уже удалось получить около 75% - это более чем в два раза выше, нежели в лучших двигателях внутреннего сгорания. Кроме того, КПД таких машин, как и у всех электромобилей, увеличивается с уменьшением нагрузки ( при замедлении происходит возврат энергии), в отличие от обычных двигателей, у которых в эти моменты эффективность падает. Если сравнить эффективность обычных автомобилей и машин с топливным элементом в условиях города, то преимущество увеличится до пяти – шести раз, поскольку последние будут иметь максимальный КПД, в то время как эффективность первых в этих условиях уменьшается до 10 – 12%.

Топливный элемент, работающий на водороде, - одна из ключевых деталей в новом автомобиле. Топливный элемент, или электрохимический генератор, преобразует химическую энергию в электрическую. То же самое происходит в электрических аккумуляторах, но в топливных элементах есть два важных отличия: 1) они работают до тех пор, пока поступает топливо; 2) химический состав электролита в процессе работы не изменяется, то есть топливный элемент не нужно перезаряжать.

Топливная батарея состоит из многих десятков элементарных ячеек, каждая примерно в сантиметр толщиной. Только так можно получить необходимые силу тока и напряжение. Каждая ячейка состоит из двух электродов, разделённых электролитом. На один электрод (анод) подводится топливо (водород), на другой (катод) – окислитель (кислород воздуха), (см. рис. 8). Необходима также система удаления продуктов реакции (воды) и отработанного воздуха. Для ускорения химической реакции поверхность электродов покрывают катализатором. Катод и анод разделены электролитом (им может быть полимер или раствор), который пропускает ионы и не пропускает электроны. На аноде водород распадается на электроны и протоны. Последние проходят через электролит и достигают катода, где соединяются с кислородом – образуется вода. Электроны движутся к внешней части ячейки, где попадают в электрический контур, куда можно подсоединять нагрузку.

Существует много разных топливных элементов, в основном они различаются типом электролита и рабочей температурой. Их можно классифицировать, например, по используемому топливу, рабочему давлению и температуре, по характеру применения. Элементы на водородном топливе. В этом типичном описанном выше элементе водород и кислород переходят в электролит через микропористые углеродные или металлические электроды. Высокая плотность тока достигается в элементах, работающих при повышенной температуре (около 250° С) и высоком авлении. Элементы, использующие водородное топливо, получаемое при переработке углеводородного топлива, например природного газа или нефтепродуктов, по-видимому, найдут наиболее широкое коммерческое применение. Объединяя большое число элементов, можно создавать мощные энергетические установки. В этих установках постоянный ток, вырабатываемый элементами, преобразуется в переменный со стандартными параметрами. Новым типом элементов, способных работать на водороде и кислороде при нормальных температуре и давлении, являются элементы с ионообменными мембранами. В этих элементах вместо жидкого электролита между электродами располагается полимерная мембрана, через которую свободно проходят ионы. В таких элементах наряду с кислородом может использоваться воздух. Образующаяся при работе элемента вода не растворяет твердый электролит и может быть легко удалена.

Элементы на углеводородном и угольном топливах. Топливные элементы, которые могут превращать химическую энергию таких широко доступных и сравнительно недорогих топлив, как пропан, природный газ, метиловый спирт, керосин или бензин, непосредственно в электричество, являются предметом интенсивного исследования. Однако пока не достигнуто заметных успехов в создании топливных элементов, работающих на газах, получаемых из углеводородного топлива, при нормальной температуре.

Для повышения скорости реакции углеводородного и угольного топлива приходится повышать рабочую температуру топливного элемента. Электролитами служат расплавы карбонатов или других солей, которые заключаются в пористую керамическую матрицу. Топливо «расщепляется» внутри элемента с образованием водорода и оксида углерода, которые поддерживают протекание токообразующей реакции в элементе. Элементы, работающие на других видах топлива. В принципе реакции в топливных элементах не обязательно должны быть реакциями окисления обычных топлив. В перспективе могут быть найдены и другие химические реакции, которые позволят осуществить эффективное непосредственное получение электричества. В некоторых устройствах электроэнергия получается при окислении, например, цинка, натрия или магния, из которых изготавливаются расходуемые электроды.

Превращение энергии обычных топлив (угля, нефти, природного газа) в электричество было до сих пор многоступенчатым процессом. Сжигание топлива, позволяющее получить пар или газ, необходимые для работы турбины или двигателя внутреннего сгорания, которые, в свою очередь, вращают электрический генератор, – процесс не очень эффективный. Действительно, коэффициент использования энергии такого превращения ограничен по второму закону термодинамики, и его вряд ли можно существенно поднять выше существующего уровня. Коэффициент использования энергии топлива самых современных паротурбинных энергетических установок не превышает 40%. Для топливных элементов нет термодинамического ограничения коэффициента использования энергии. В существующих топливных элементах от 60 до 70% энергии топлива непосредственно превращается в электричество, и энергетические установки на топливных элементах, использующие водород из углеводородного топлива, проектируются на КПД 40–45%. назад дальше Самый перспективный топливный элемент, который предполагается использовать в новых автомобилях, - это элемент с твёрдой ионообменной мембраной (proton exchange membrane fuel cell, или сокращённо РЕМFC). Твёрдый электролит имеет множество преимуществ: его не растворяет образующаяся при работе элемента вода, его просто делать в промышленном масштабе. Более того, элемент на твёрдом электролите работает при относительно низких температурах (80єС) и соответственно не требует предварительного прогрева. С другой стороны, и КПД при таких температурах меньше, чем при повышенных.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы