Новые транспортные двигатели

В случае обеднения смеси при подаче водорода во впускной трубопровод на режимах малых нагрузок и холостого хода также имеют место обратные вспышки, однако они не приводят к остановке двигателя и проявляются только в колебаниях его оборотов. Частота обратных вспышек на этих режимах не зависит от типа свечи зажигания, так как основной причиной появления неустойчивости данного типа является относи

тельно большое количество кислорода в остаточных газах, с которым активно реагирует водород в момент подачи в камеру сгорания [ ].

Максимум индикаторного КПД водородного двигателя имеет место при б=2,5ч2,7 и при дальнейшем обеднении смеси несколько снижается [ ]. При этом оптимальный угол опережения зажигания изменяется в довольно широких пределах, например, при увеличении б от 1,0 до 3,1 соответственно от 1,5 до 25є при 1500 об/мин. Вследствие высокой скорости сгорания водорода оптимальный угол опережения зажигания даже для ультрабедных водородо-воздушных смесей ( б=3,0ч3,5) не превышает оптимум угла опережения зажигания бензо-воздушных смесей с б=1,1.

Состав отработавших газов водородного двигателя существенно отличается от состава отработавших газов бензинового ДВС в основном за счет отсутствия углерода в топливе. Тем не менее в выхлопных газах водородного ДВС присутствует незначительное количество СО и СН (см. рис 5), наличие которых обусловлено выгоранием углеводородных смазок, попадающих в камеру сгорания. Максимальная величина эмиссии NOх вследствие более высоких температур сгорания водорода примерно вдвое выше, чем у бензинового двигателя.

Рис.5. Состав отработавших газов водородного двигателя:

1-богатая граница устойчивой работы на водороде; 2-бедная граница устойчивой работы на изооктане; 3-бедная граница работы на водороде.

Добавка к водородному топливу воды позволяет резко снизить содержание окислов азота в ОГ без существенных потерь мощности двигателя или ухудшения его КПД.

3.3 Работа ДВС на бензо–водородных смесях.

В этом случае благодаря повышению реакционной способности топливо–воздушной смеси появляется возможность работы двигателя, как и в случае чистого водорода, на переобедненных смесях, главным образом в области частичных нагрузок и режиме холостого хода. Согласно экспериментальным данным [ ], зависимость эффективного предела обеднения бензо – водородных смесей от количества добавок водорода носит нелинейный характер:

Содержание Н2, % по массе…………

Нижняя граница устойчивой работы 0 10 20 40 100

ДВС, б…………………………… . 1,12 1,67 2,5 3,34 5,0

Поэтому наиболее целесообразно использование топливных смесей с добавкой водорода до 20% по массе, соответствующих пределу обеднения порядка б=2,5. Этот предел эффективного обеднения определен при условии устойчивой работы двигателя без пропусков сгорания. Пропуски сгорания достаточно точно могут быть определены по моменту резкого возрастания концентрации СН в ОГ ДВС, а также значительным колебаниям давления с понижением температуры в выпускном коллекторе.

На рис. 6 показано изменение состава ОГ по б при работе дви гателя на добавках водорода, соответствующих рассмотренным нижним пределам обеднения топливной смеси [ ]. До б=1,1 двигатель работает на чистом изооктане, затем постепенно наращивается процент водорода в смеси вплоть до перехода на чистый водород.

Рис.6. Изменение состава ОГ при работе двигателя на водородо - изооктановых смесях в области предельного обеднения.

Изменение количества окислов азота при этом практически соответствует количеству NOх в ОГ при работе ДВС на чистом водороде: при б>1,8 концентрация NOx незначительна. Что касается эмиссии углеводородов, то после достижения минимума при б=1,25 по мере дальнейшего обеднения смеси их количество в ОГ снова возрастает, отражая тем самым увеличение недогорания углеводородного топлива. В то же время работа двигателя в ультрабедной области лишь незначительно сказывается на эмиссии СО. Значение индикаторного КПД двигателя при переходе к переобедненным смесям возрастает от 33% для б=1 до 37% при б=1,8, а индикаторная мощность уменьшается в том же диапазоне на 30% за счет снижения количества подведенного тепла.

При организации работы автомобиля на бензо – водородных смесях могут быть использованы следующие способы дозирования водорода: 1) постоянная подача неизменного количества водорода независимо от режима работы двигателя; 2) регулируемая подача водорода, поддерживающая его определенную долю в топливной смеси (например, 10% от количества бензина на всех режимах работы двигателя).

Первый вариант дозирования отличается простотой, так как в этом случае требуется лишь дозирующая шайба, обеспечивающая определенный расход водорода на номинальном режиме работы двигателя. Для поддержания исходной теплопроизводительности топливной смеси количество подаваемого бензина следует уменьшать, в частности посредством отключения системы холостого хода карбюратора. Необходимая работоспособность двигателя на холостом ходу и режимах малых нагрузок успешно обеспечивается водородо – воздушными смесями. На рис.6 представлено изменение параметров топливной смеси в эмиссии NOx при различных скоростях движения с постоянным расходом добавки водорода, равным 18 г/мин [ ]. На основании этих данных можно заключить, что выброс NOx при движении автомобиля со скоростью 30 км/ч примерно в 5 раз больше, чем при движении со скоростью 60-100 км/ч. Эта закономерность обусловлена обогащением топливной смеси при низких скоростях движения автомобиля из-за постоянного расхода водорода.

Для поддержания постоянного соотношения «водород/топливо» и состава смеси на всех режимах работы требуется система дозирования водорода и бензина в соответствии с изменением расхода воздуха. Для этой цели может быть использован газовый редуктор в комбинации с бензиновым карбюратором. Результаты испытаний автомобиля с комбинированной системой подачи водорода и бензина представлены на рис.7.б. Добавка водорода на всех режимах поддерживалась практически постоянной – 10%, тогда как состав смеси изменялся от б=1,8 на холостом ходу до б=1,5 на скорости автомобиля 100 км/ч. Это сравнительно небольшое обогащение смеси на высоких скоростях движения ведет к существенному увеличению выбросов NOx. . Тем не менее в условиях городского движения с низкими и средними скоростями этот способ дозирования, несомненно, обеспечивает более приемлемые уровни эмиссии NOx с ОГ автомобиля. Это подтверждается результатами испытания [ ] автомобилей с рассмотренной системой дозирования топлива по стандартному ездовому циклу:

Компонент ОГ……………… NOx СО СН

Удельный выброс, г/км……. 0,24 2,1 1,9

Снижение добавок водорода до 5% позволяет сохранить максимальную мощность двигателя при определенном улучшении его экономических и токсических характеристик.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Транспорт»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы