Диагностика карбюраторных двигателей
Шумы подвержены значительным искажениям под влиянием внешней среды. Это усложняет их использование для диагностики двигателей. Вибрации воспринимаются непосредственно на поверхности диагностируемого механизма, благодаря чему дают более достоверную информацию о его техническом состоянии.
Возможность осуществления виброакустической диагностики двигателя, т.е. возможность расшифровки колебат
ельных процессов, обусловлена следующими положениями. Колебания, возникающие при соударениях сопряжённых деталей, по своим параметрам резко отличаются как от колебаний газодинамического происхождения, так и от колебаний, обусловленных трением. Каждая соударяющаяся пара порождает свои собственные колебания. При изменении зазоров мощность колебаний резко изменяется вследствие изменения энергии соударения, при этом также изменяется длительность соударений. Принадлежность колебаний соударяющихся пар может быть определена по фазе относительно опорной точки (в.м.т., посадка клапана и др.). Величина параметров сигнала изменяется от скоростного и нагрузочного режимов работы двигателя.
Существует несколько методов виброакустической диагностики. Одним из них является регистрация при помощи осциллографа уровня колебательного процесса в виде мгновенного импульса в функции времени (или угла поворота коленчатого вала). Чтобы подавить помехи и конкретизировать наблюдение, процесс регистрируют, во-первых, в полосе частот, в которой неисправность данного механизма проявляется наиболее сильно, во-вторых, на узком участке, вблизи опорной точки (например, в.м.т.), в-третьих, используют наиболее выгодные для диагностики скоростные и нагрузочные режимы и места установки датчиков. О неисправностях диагностируемого сопряжения судят по уровню и характеру спада колебательного процесса, сравнивая его с нормативным.
Другим более универсальным методом виброакустической диагностики является регистрация и анализ всего спектра, т.е. всей совокупности колебательных процессов. Анализ спектра заключается в группировке по частотам его составляющих колебательных процессов при помощи фильтров (подобно настройке радиоприёмника на соответствующие волны). Колебательный спектр снимают на узком, характерном, участке процесса при соответствующем скоростном и нагрузочном режиме работы диагностируемого механизма. Дефект выявляют по максимальному или среднему уровню колебательного процесса в полосе частот, обусловленной работой диагностируемого сопряжения. Полученные результаты сравнивают с нормативами (эталонами). Нормативы определяют экспериментально, путём искусственного введения дефектов или путём накопления и статической обработки результатов эксплуатационных наблюдений.
При автоматизированном диагностическом заключении измеренные величины амплитуд и их смещений сравнивают при помощи логического устройства с эталонами, хранящимися в блоке памяти машины.
Диагностика по параметрам картерного масла даёт возможность определить темп изнашивания деталей двигателя, качество работы воздушных и масляных фильтров, герметичность системы охлаждения, а также годность самого масла. Для этого необходимо периодически отбирать из картера пробы масла, измерять концентрацию в нём продуктов износа и кремния, определять вязкость и содержание воды. Превышение допустимых норм по концентрации в масле металлов укажет на неисправную работу сопряжённых деталей, превышение нормы содержания кремния - на неисправность фильтров, присутствие воды - на неисправность системы охлаждения, а пониженная вязкость позволит судить о годности масла.
Возможность диагностики двигателя по концентрации продуктов износа (свинца, хрома, железа, алюминия и др.) в картерном масле обусловлена зависимостью её уровня только от интенсивности изнашивания соответствующих деталей (подшипников, колец, цилиндров) двигателя. Это означает, что по истечении некоторого времени работы масла в двигателе (при практическом постоянстве объёма масла, интенсивности очистки и угаре) концентрация каждого из продуктов износа в масле достигает определённого уровня и стабилизируется. Убыль и пополнение взвешенных в масле частиц уравновешивается. Этот уровень будет тем выше, чем больше скорость изнашивания деталей двигателя. Так как скорость изнашивания при исправных системах фильтрации и охлаждения характеризует исправность сопряжения трущихся пар механизма, то по уровню концентрации можно выявить скрытые и назревающие отказы.
Уровень концентрации к продуктов износа в масле после наступления его стабилизации определяется выражением
где с - интенсивность поступления в масло продуктов износа;
вф - интенсивность удаления продуктов износа маслоочистителем;
ву - интенсивность убыли продуктов износа за счёт угара масла.
Для диагностики двигателя по концентрации продуктов износа в картерном масле (каждого металла в отдельности) применяют спектральный анализ, обладающий весьма высокой чувствительностью.
Спектральный анализ заключается в следующем. Пробу картерного масла сжигают в высокотемпературном пламени вольтовой дуги и регистрируют спектр при помощи спектрографа или автоматизированной фотоэлектрической установки. Пары продуктов износа дают линейчатый спектр, который подвергают качественному и количественному анализу.
Качественный анализ состоит в обнаружении спектральных линий, свидетельствующих о присутствии в картерном масле металлов изнашивающихся деталей, а количественный - в определении интенсивности почернения спектральных линий. Плотность почернения линий измеряют при помощи микрофотометра. Полученный результат переводят в абсолютные единицы концентрации, используя тарировочные графики. График строят для каждого элемента по результатам анализа эталонов (проб масла с известным содержанием элемента). В процессе эксплуатации на каждый автомобиль ведут график изменения уровня концентрации продуктов износа металлов наиболее ответственных деталей двигателя (например, цилиндров - Fe, поршней - Al, колец - Cr, подшипников коленчатого вала - Pb), а также следят за концентрацией кремния, вязкостью и другими параметрами масла. Таким образом наблюдая за темпом изнашивания основных деталей, за появлением в масле кремния и годностью масла, заблаговременно выявляют отказы механизмов и систем, и прогнозируют ресурс работы двигателя.
Менее точно, но относительно быстро и просто можно диагностировать двигатель по концентрации ферромагнитных частиц в его картерном масле. Такую диагностику осуществляют при помощи электрического прибора, измеряющего концентрацию продуктов износа железа по изменению индуктивности масла за счёт присутствия в нём ферромагнитных частиц.
7.2. Система охлаждения.
Характерными неисправностями системы охлаждения являются подтекания и недостаточная эффективность охлаждения двигателя. Первое происходит из-за повреждения шлангов и их соединений, сальника водяного насоса, трещин, порчи прокладок, а второе - вследствие образования накипи, внутреннего или внешнего загрязнения радиатора, повреждения его трубок, поломок водяного насоса, неисправности термостата, пробуксовки ремня вентилятора или его обрыва. В результате этих неисправностей двигатель перегревается во время работы.
Другие рефераты на тему «Транспорт»:
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск