Сигнализация в сетях железнодорожной связи
is attached to (присоединен к)
above (над)
set (установить)
Отличие этих конструкций от обычных BNF состоит в некоторых дополнительных логических и геометрических соотношениях между аргументами, которые автор вынужден оставить за пределами настоящей книги в силу ограниченного объема последней. Тем не менее, из приведенных ниже примеров основные правила станут понятны читателю.
О
сновные символы, используемые в MSC, приведены в таблице 2.2.
Существует три типа комментариев в MSC, причем первый определяется в текстуальном синтаксисе как note, а третий определяется как символ текста (табл.2.2) с текстовым содержанием.
Размер графических символов может выбираться произвольно.
Таблица 2.2. Основные символы, используемые в MSC
Сценарий MSC может быть разбит на несколько страниц. Разбивка может быть горизонтальной и вертикальной. Если MSC разбивается на страницы вертикально, заголовок повторяется на каждой странице, но последний символ типа должен присутствовать только на последней странице. Страницы должны нумероваться парами: «v-h», где «v»- вертикальный номер страницы, a «h»- горизонтальный. Арабские цифры должны использоваться для вертикальной нумерации, а английские буквы («А»-«Z») для горизонтальной. Если этого недостаточно, тогда ряд можно расширить с «АА» до «AZ», «ВА» до «BZ» и т.д. Для каждого типа заголовок должен находиться на первой странице, откуда он начинается, и должен повторяться на всех следующих страницах.
Если сообщения, таймеры, состояния создания или условия продолжаются от одной страницы до следующей страницы, то текст, связанный с сообщением, таймером и т.п., должен быть представлен на первой странице и целиком или частично на следующей.
MSC описывает взаимодействие между каким-либо числом компонент системы и между этими компонентами и окружающей средой.
Для каждой компоненты системы, охватываемой MSC, существует ось требований. Взаимодействия между компонентами системы представлены линиями сообщений. Посылка и прием сообщения - это два асинхронных события. Это предполагает, что в MSC окружающая среда способна принимать и посылать сообщения независимо.
Предполагается, что поведение окружающей среды также подчинено законам MSC. Для каждого события MSC предполагается глобальная ось времени. Вдоль каждой оси отсчет времени идет сверху вниз, однако собственная шкала времени не определена.
Графическое MSC-описание фрагмента процесса OTLOC обработки сигналов для протокола сигнализации по двум выделенным сигнальным каналам (2ВСК), рассматриваемого в главе 3, при попытке установления исходящего соединения в ситуации занятости соединительных путей на встречной станции, приведено на рис.2.17.
Рис.2.17. Описание попытки установления соединеА1я при '*"' занятости соединительных путей
В данном MSC-описании определены процесс OTLOC обработки сигналов; сообщения NEW_CALL (новый вызов), SEIZURE (занятие), АСК (подтверждение занятия), B_NUMBER (номер абонента Б), CONGESTION (занятость промпутей), REJECT (отказ), DISCONNECT (разъединение), RELEASE_GUARD (контроль исходного состояния), IDLE (исходное); вентили 1, 6,9 к программному обеспечению обработки вызовов и все остальные к физическому уровню интерфейса с соединительной линией; тайм-ауты Т1 (ожидание поступления подтверждения занятия) и Т2 (время непроизводительного занятия соединительной линии).
Текстовое представление данного описания выглядит следующим образом:
MSC
instance OTLOC;
1. in NEW_CALL
2. out SEIZURE
set TI
set T2
3. in АСК
reset Tl
4. out B_NUMBER
5. in CONGESTION reset T2
6. out REJECT
7. out DISCONNECT
8. in RELEASE_GUARD
9. out IDLE
end instance
end MSC
Недостаток такого описания заключается в его линейном характере и в невозможности представить на одной диаграмме ветвление алгоритма.
Для того, чтобы представить процесс при различных возможных сценариях, используется так называемая обзорная диаграмма MSC, иногда называемая «дорожной картой». На ней представляются все MSC-сценарии и так называемые условия. Упрощенная «дорожная карта» процесса OTLOC обработки сигналов для протокола сигнализации 2ВСК по соединительной линии ГТС из предыдущего примера представлена на рис. 2.18. MSC-сценарии показаны прямоугольниками, а условия - шестиугольниками.
Рис. 2.18. Упрощенная обзорная диаграмма MSC обмена сигналами по соединительной линии ГТС
Подобная карта близка к более широко применяемому методу описаний - граф-схеме алгоритма и позволяет легко перейти от набора MSC-сценариев к SDL-диаграмме, поскольку условия можно представить в виде SDL-состояний, а MSC-сценарии представляют собой последовательности сигналов, переводящих процесс из состояния в состояние, и задач, выполняемых при этих переходах.
При этом отдельные MSC-сценарии, представленные на «дорожной карте» в виде прямоугольников, могут входить в конкретные сценарии типа изображенной на рис. 2.17 MSC-процедуры.
К достоинствам описания процессов при помощи MSC относятся исключительная наглядность и легкость, с которой могут быть проверены протоколы, специфицированные таким методом. Достаточно сказать, что тестовые сценарии получаются путем слияния MSC-спецификаций разрабатываемого процесса и имитатора протокола.
Именно подобным образом разработаны протокол-тестеры российских систем сигнализации, используемые для отладки программного обеспечения цифровых АТС, предназначенных к установке на телефонных сетях СНГ, и рассмотренные в заключительной главе книги.
Это может быть проиллюстрировано на приведенном выше примере сценария MSC Cong на рис. 2.17. Тестирование выполнения данной спецификации должно осуществляться имитатором протокола по сценарию MSC Sim, изображенному на рисунке 2.19.
Рис. 2.19. Сценарий работы имитатора протокола обмена сигналами по СЛ при занятости промпутей
В приведенном описании определен момент SIGTEST. Сообщения SEIZURE, ACK, BJMUMBER, CONGESTION, DISCONNECTION, RELEASE_GUARD были введены для сценария MSC Cong. Сообщения SZ_IND (индикация занятия), DIGITS (цифры номера), DIS_IND (индикация разъединения) и PASSED (тест прошел) дают информацию оператору о прохождении соответствующих этапов испытаний.
Сообщения CONG_IN (команда на передачу сигнала о занятости соединительных путей) и RLG_IN (команда на передачу сигнала «Контроль исходного состояния») поступают от оператора. Вентили 1,3,4,7,8,11 -к физическому уровню интерфейса с соединительной линией, а 2,5,6, 9, 10, 12 - к интерфейсу с пользователем (оператором). Таймеры Т1‘ и Т2’ обеспечивают тайм-ауты для ожидания соответствующих сигналов.
Текстовое описание процесса тестирования выглядит следующим 1 образом:
Другие рефераты на тему «Транспорт»:
- Реформирование железнодорожного транспортам России
- Анализ аварийности и БДД в Мире, России, в Волгограде, в Городищенском районе Волгоградской области
- Организация сквозного планирования местной работы на базе АСУ МР в пределах района управления ДЦУП
- Проектирование вагонных депо и вагоноремонтных заводов
- Организация транспортной инфраструктуры муниципального образования
Поиск рефератов
Последние рефераты раздела
- Проект пассажирского вагонного депо с разработкой контрольного пункта автосцепки
- Проектирование автомобильных дорог
- Проектирование автотранспортного предприятия МАЗ
- Производственно-техническая база предприятий автомобильного транспорта
- Расчет подъемного механизма самосвала
- Системы автоблокировки
- Совершенствование организации движения и снижение аварийности общественного транспорта в городе Витебск