Эколого-экономическая оценка использования и охраны водных ресурсов
Общий объем воды, потребляемой тепловыми электростанциями страны, составляет около 160 км3, в том числе свежей 70, оборотной 90 км3, что превышает годовой суммарный сток таких рек, как Днепр, Дон, Урал. Системы охлаждения прямотоком характерны для конденсационных электростанций, а для ТЭЦ, как правило, применяются оборотные системы. Около 95% сточных вод тепловых электростанций составляет охлаж
дающая вода, практически не загрязненная. Небольшая часть потребности электростанций в воде (около 8 км3) покрывается морской водой. На морской воде работают станции на побережьях Балтийского и Каспийского морей, Тихого океана.
Воздействие электростанций на гидрологический и биологический режимы водоемов многообразно и обусловлено травмированием организмов при прохождении ими агрегатов станции вместе с охлаждающей водой, поступлением вместе со сбрасываемой водой добавочного тепла, повышающего температуру водоемов, и внесением загрязнений со сбросными водами.
При сбрасывании подогретых вод повышается температура воды в водоемах и водотоках, что отражается на фауне и флоре. Повышение ее до 20-25ºС и более сказывается положительно, стимулируя рост и размножение организмов, а до 26-30ºС и более – подавляет развитие основных групп гидробионтов. Непрерывный поток подогретой воды усиливает течение, которым сносится планктон. Изменяются условия обитания не только планктона, но и зообентоса из-за размыва этим потоком грунтов, нарушается кислородный режим, вода загрязняется нефтепродуктами. Солями тяжелых металлов, кислотами и щелочами, а через атмосферные выбросы – золой, оксидами серы, азота и т.д. Вместе с тем, если тепловые сбросы поступают в придонные слои, тепловой режим водоема и циркуляция водных масс в некоторых случаях могут быть улучшены. Положительно следует оценивать и отсутствие ледового покрова зимой или более короткий период его существования, поскольку это улучшает кислородный режим водоема.
Сказанное свидетельствует о важности выбора системы водоснабжения электростанций, необходимости более рационального размещения их, разработки или совершенствования системы технологических процессов по утилизации тепловых вод в хозяйстве. В этих целях проводятся научно-исследовательские и практические работы по использованию теплых вод для орошения сельскохозяйственных культур, водоснабжению животноводческих ферм, обогреву открытого грунта, выращиванию на корм рыбам зеленых водорослей и разведению рыб в бассейнах.
Учитывая, что в наиболее развитых странах в 2000 г. на охлаждение тепловых электростанций было использовано около 10% водных ресурсов, можно представить, насколько большое хозяйственное и экологическое значение имеет строительство тепловых электростанций на берегах водоемов. Снижению отрицательного воздействия тепловых электростанций на водоемы способствуют: максимальное ограничение прямоточных систем водоснабжения; применение оборотных систем; химическая обработка добавочной воды оборотных систем технического водоснабжения; повторное использование замасленных и мазутных вод после предварительной очистки; нейтрализация сточных вод подготовительных установок.
Важнейшей подотраслью топливно-энергетического и водного хозяйства страны является гидроэнергетика. Гидроэнергетический потенциал освоен в Поволжье и на Урале на 60-80%, в Сибири, на Дальнем Востоке и в Средней Азии от 3-5 до 20%. Установленные мощность и выработка электроэнергии ГЭС в энергосистемах страны составляют за последние десятилетия 18-20 и 12-14% соответственно. Ежегодная экономия топлива за счет работы ГЭС исчисляется в целом по стране 70-80 млн. т условного топлива.
Основная функция гидроэлектростанций в современных энергосистемах – регулирование равномерности суточной нагрузки энергосистем. Разница между максимальной и минимальной нагрузками суточного графика во всех энергосистемах составляет 10-20 млн. кВт. Покрытие пиков графиков нагрузки тепловыми электростанциями не всегда возможно и целесообразно по техническим и экономическим причинам. Частое чередование глубокой разгрузки и полной нагрузки тепловых агрегатов сокращает срок службы оборудования, увеличивает частоту и объем ремонтных работ, повышает аварийность, существенно увеличивает удельный расход топлива на производство электроэнергии. Агрегаты же гидроэлектростанций быстро (в течение 1 мин) и легко воспринимают нагрузку энергосистем. Возможный диапазон регулирования мощности гидроэлектростанций обычно близок к их полной установленной мощности.
На большинстве гидроэнергетических водохранилищ осуществляется суточное и недельное регулирование стока и только на наиболее крупных водохранилищах – сезонное и многолетнее. При отсутствии регулирующих водохранилищ гидроэлектростанции вырабатывали бы энергию не в соответствии с требованием энергетических систем, а в зависимости от водности реки в тот или иной период. Поскольку расход воды в реках в разное время года меняется в десятки и сотни раз, гидроэлектростанции без регулирующих водохранилищ также изменяли бы свою мощность и выработку энергии. Кроме того, при использовании гидроэнергоресурсов без регулирующих водохранилищ чрезвычайно трудно выбрать установленную мощность станции. Если бы мощность станции рассчитывалась в соответствии с максимальным расходом, то большую часть года многие агрегаты простаивали бы из-за недостатка воды. Так, для гидроэлектростанций, не имеющих регулирующих водохранилищ, характерен низкий коэффициент использования стока – нередко 0,1 - 0,2.
Помимо природных предпосылок, вызывающих необходимость создания водохранилищ для гидроэлектростанций, имеются технические и экономические факторы. Среди них – неравномерное потребление электроэнергии в течение как суток и недели, так и года, несовпадение во времени бытовых расходов воды в реке с графиком нагрузки энергосистемы.
В связи с ростом пиков графиков нагрузки в энергосистемах гидроэлектростанции не всюду справляются с их покрытием. Поэтому в последние десятилетия все шире развертывается строительство гидроаккумулирующих станций (ГАЭС), которые также предъявляют свои особые требования к водным ресурсам.
Основные элементы ГАЭС: два бассейна-водохранилища – верховой и низовой, расположенные на разных уровнях, обычно в пределах от нескольких десятков до 200 м; здание гидроэлектростанции с оборотными агрегатами, работающими попеременно в насосном и турбинном режимах; трубопроводы, соединяющие оба бассейна со зданием гидроэлектростанции. В период ночных провалов нагрузок в энергетической системе энергия тепловых и атомных электростанций используется агрегатами, работающими в насосном режиме для подкачки воды из низового бассейна в верховой. В период же пика нагрузки вода из верхового бассейна сбрасывается в низовой и ГАЭС питает энергосистему.
На большинстве эксплуатируемых гидроаккумулирующих станций низовые и верховые бассейны созданы специально: низовой – путем строительства небольшой плотины в русле реки, верховой – посредством выемки и обвалования бассейна, как правило, по всему его периметру. По мере развития ГАЭС и увеличения их установленной мощности (до 2 млн кВт) в качестве низового бассейна используются естественные озера и водохранилища.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль