Газохроматографический метод определения загрязненности воздуха
М + е М–,
что приводит к снижению начального фонового тока.
ЭЗД обладает высокой ионизационной эффективностью. В газе-носителе недопустимо присутствие кислорода, влаги и др. соединений, снижающих количество электронов или их подвижность.
Предел детектирования ЭЗД на два-три порядка ниже ПИД, он сильно зависит от числа и положения атомов галогенов в молекулах. В табл. 4 прив
едены данные по относительной чувствительности (относительно хлорметана) ЭЗД к некоторым соединениям.
Таблица 4
Относительная чувствительность ЭЗД к некоторым соединениям
Соединения |
Относительная чувствительность |
Соединения |
Относительная чувствительность |
Хлорметан |
1 |
Фторбензол |
0,3 |
Дихлорметан |
11 |
Хлорбензол |
10 |
Хлороформ |
4 · 105 |
Бромбензол |
10 |
Четыреххлористый углерод |
5 · 106 |
Иодбензол |
3 · 104 |
Термоионный детектор (ТИД)
ТИД селективен к N- и P-содержащим соединениям за счет введения в пламя водорода паров солей щелочных металлов (К, Na, Rb и Cs). Скорость введения паров щелочных металлов должна быть стабилизирована. ТИД чувствителен к стабильности поддержания скорости водорода, воздуха и газа-носителя. Селективность ТИД к N- и P- органическим соединениям по сравнению с ПИД — порядка 102–103.
Пламенно-фотометрический детектор (ПФД)
ПДФ селективен к S- и P-содержащим соединениям, при сжигании которых в пламени, обогащенном водородом, по сравнению с ПИДом, излучаемый свет от этих элементов направляется в фотоумножитель через специальные фильтры (394 нм для S и 526 нм для Р).
Особенности детектора:
· чувствительность ПФД к S-и Р-содержащим соединениям тем больше, чем выше содержание этих элементов в соединениях;
· сигнал к Р-содержащим соединениям пропорционален концентрации этого вещества в газе-носителе;
· сигнал к S-содержащим соединениям пропорционален логарифму потока вещества.
Фотоионизационный детектор (ФИД)
В ФИДе ионизация анализируемых соединений происходит за счет УФ-излучения в специальной камере с двумя электродами. При фотоионизации молекулы анализируемых соединений диссоциируются на ион и электрон:
А + h A+ + е–.
Образуемые ионы собираются электродами. Ионизируются только те соединения, потенциал которых ниже энергии фотонов. В зависимости от лампы энергия фотонов может быть 9,5; 10,2 и 11,7 эВ.
ФИД как и ПИД обладает высокой чувствительностью ко всем органическим соединениям. К ароматическим соединениям ФИД имеет в 10–50 раз большую чувствительность, чем ПИД.
В отличие от ПИД, ФИД может регистрировать H2S, PH3, NH3, AsH3 и
Колонки для газовых хроматографов
Колонки в газовой хроматографии подразделяются на насадочные (НК): препаративные, аналитические, микронасадочные и капиллярные (КК). В табл. 5 приведены характеристики этих колонок.
Таблица 5
Характеристики колонок для газовых хроматографов
Типы колонок |
Внутренний диаметр колонок, мм |
Длина колонки, м |
Препаративные насадочные |
Более 4 |
0,5–2 |
Аналитические насадочные |
2–4 |
0,2–6 |
Микронасадочные |
0,5–1 |
0,5–3 |
Капиллярные |
0,2–0,3 |
5–100 |
Узкие капиллярные |
0,05–0,2 |
5–100 |
Капиллярные широкого диаметра |
0,3–0,8 |
10–60 |
Поликапиллярные |
0,04 |
0,2; 1 |
В насадочных, микронасадочных колонках сорбент находится внутри трубки и имеет форму цилиндра. Набивка должна быть плотной и однородной, без пустот. Чем плотнее и однороднее набивка, тем меньше размывание полос и больше эффективность колонки.
В КК слой сорбентов наносится на внутреннюю поверхность капилляра в виде слоя жидкой неподвижной фазы или в виде слоя адсорбента.
На рис. 6 изображены разные типы колонок.
По форме НК бывают прямые, U-образные, W-образные и спиральные с разным радиусом кривизны.
Рис. 6. Типы колонок
Прямые и U-образные НК легко и наиболее плотно заполняются сорбентом без специальных приспособлений. W-образные и спиральные колонки заполняют под давлением на входе, либо с вакуумом на выходе из колонки.
На спиральных колонках при большом радиусе кривизны витков появляется дополнительное размывание, связанное с неоднородностью скоростей по сечению. Сопротивление потоку у ближней (к центру окружности) стенки трубки меньше, чем у дальней, так как пути прохождения газовых потоков у ближней стенки меньше.
Колонки изготавливаются из металла (нержавеющая сталь, никель, медь), стекла, тефлона и других материалов. Чаще всего в аналитической практике применяются колонки из нержавеющей стали (для особо агрессивных смесей — колонки из никеля). Для разделения неустойчивых соединений (каталитически разлагающихся при контакте с металлической поверхностью) используют стеклянные и тефлоновые колонки; в частности, стеклянные колонки широко применяются при анализе пестицидов.
КК изготавливались из нержавеющей стали, меди и латуни, затем начали использовать стекло (была предложена специальная лабораторная установка для вытягивания капилляров из толстостенной стеклянной трубки с внешним диаметром 6–10 мм). Позднее (с 1980 г.) начали применять кварцевые КК, которые имеют наиболее инертную поверхность. Кварцевые капилляры для придания гибкости и прочности с внешней поверхности покрываются тонким слоем высокотемпературного полиамидного лака (до 350 °С) или слоем алюминия. Кварцевые КК со слоем лака допускают изгиб до 8–10 мм. В последние годы вновь появился интерес к металлическим КК, но с инертной (пассивированной) внутренней поверхностью.
Другие рефераты на тему «Экология и охрана природы»:
Поиск рефератов
Последние рефераты раздела
- Влияние Чекмагушевского молочного завода на загрязнение вод реки Чебекей
- Влияние антропогенного фактора на загрязнение реки Ляля
- Киотский протокол - как механизм регулирования глобальных экологических проблем на международном уровне
- Лицензирование природопользования, деятельности в области охраны окружающей среды и обеспечения экологической безопасности
- Мировые тенденции развития ядерной технологии
- Негативные изменения состояния водного бассейна крупного города под влиянием деятельности человека
- Общественная экологическая экспертиза и экологический контроль