Внеклассная работа по математике в 7-9 классах
Если учитель дополнит алгебру множеств сведениями из математической логики (логические функции, область истинности предиката), то это без сомнения будет способствовать более углубленному и осознанному усвоению учащимися многих вопросов школьного курса математики, в частности вопросов теории уравнений, неравенств и их систем.
При изучении вопроса о бесконечных множествах даже на факультативн
ых занятиях нет возможности основательно ознакомить учащихся с арифметикой трансфинитных чисел. Да в этом, на наш взгляд, и нет необходимости. Важно лишь, чтобы учащиеся осознали главные особенности конечных и бесконечных множеств, проявляющиеся в специфике арифметики натуральных и трансфинитных чисел.
Уже после первого занятия учащиеся систематически получают задания для самостоятельного изучения соответствующего материала.
На самих занятиях качество усвоения теории проверяется в процессе решения задач и примеров. Здесь совершенно недопустимы такие формы работы, которые сковывали бы инициативу учащихся. Занятие начинается с постановки упражнения для всех учащихся. За время, которое отводится на выполнение задачи или примера, учитель успевает проследить, кто и как справляется с заданием. Не следует торопить учащихся. Обычно, если не все, то некоторые из них выполняют задание в запланированное учителем время, а затем начинается разбор и теоретическое обоснование решений. Инициатива в оценке способов решения, в исправлении ошибок, в постановке вопросов представляется самим учащимся. В процессе этой работы достигается логическая точность в формулировках определений понятия или их свойств. В заключительном слове учитель дает мотивированную оценку знаний учащихся. Помимо указанной формы контроля знаний, целесообразно проводить кратковременные 15-20-минутные проверочные работы. Занятия по курсу 9 класса полезно завершить часовой контрольной работой.
Для особого факультативного изучения полезно отнести:
а) решение нестандартных математических задач;
б) элементы программирования и принцип работы электронно-вычислительных машин;
в) творческие индивидуальные работы учащихся над избранными ими самими вопросами элементарной математики.
Приведем пример факультативного занятия по математике для учеников 7-х классов отстающих от школьной программы. Для того, чтобы выяснить уровень ученика, по теме: сложение и вычитание дробей с разными знаменателями. Зададим ученикам несколько теоретических и практических заданий. Во время опроса ученики не должны пользоваться учебниками, тетрадями и другой литературой.
Теоретические вопросы.
Сформулируйте правило сложения дробей с одинаковыми знаменателями.
Сформулируйте правило вычитания дробей с одинаковыми знаменателями.
Как выполняют сложение и вычитание дробей с разными знаменателями.
Теоретические вопросы у всех должны быть одинаковые. Зачастую ученики не могут ответить на теоретические вопросы, именно поэтому возникают проблемы с практическим заданием. Важно на факультативных занятиях более подробно рассматривать нужные правила. Ученик не должен стесняться задавать вопросы.
Далее подробно решить задание. Например: сложим дроби 1/6а+1/3в=2.
Знаменатели дробей представляют собой одночлены. Наиболее простым общим знаменателями являются одночлен 12ав. Коэффициент этого одночлена равен наименьшему общему кратному коэффициентов знаменателей дробей, а каждая переменная взята с наибольшим показателем, с которым она входит в знаменатели дробей. Дополнительные множители к числителям и знаменателям этих дробей равны 3в и 2а.
На основании этого примера дать ученикам попробовать еще раз справиться с заданием. Желающие могут выйти к доске.
На факультативных занятиях для отстающих учеников, главное дать понять ученику, что он сможет решить предложенные задания. Даже если поначалу ученику помогают, то впоследствии ему будет важно добиться самостоятельных успехов.
Кружковые занятия по математике и методика её проведения
Математический кружок - одна из наиболее действенных и эффективных форм внеклассных занятий. В основе кружковой работы лежит принцип строгой добровольности. Обычно кружковые занятия организуются для хорошо успевающих учащихся. Однако следует иметь в виду, что иногда и слабо успевающие учащиеся изъявляют желание участвовать в работе математического кружка и нередко весьма успешно занимаются там; учителю математики не следует этому препятствовать. Необходимо лишь более внимательно отнестись к таким учащимся, постараться укрепить имеющиеся у них ростки интереса к математике, проследить за тем, чтобы работа в математическом кружке оказалась для них посильной. Конечно, наличие слабо успевающих учащихся среди членов математического кружка затрудняет работу учителя, однако путем индивидуализации заданий, предлагаемых учителем кружковцам, можно в некоторой степени ослабить эти трудности. Главное - сохранить массовый характер кружковых занятий по математике, являющийся следствием доступности посещения кружковых занятий всеми желающими.
Уже при организации математического кружка необходимо заинтересовать учащихся, показать им, что работа в кружке не является дублированием классных занятии, четко сформулировать цели и раскрыть характер предстоящей работы (для этого целесообразно выделить часть времени на одном из уроков математики с тем, чтобы обратиться с сообщением об организации кружка ко всему классу).
На первом занятии кружка надо наметить основное содержание работы, выбрать старосту кружка, договориться с учащимися о правах и обязанностях члена кружка, составить план работы и распределить поручения за те или иные мероприятия (выпуск математической стенной газеты, ведение документации работы кружка и т. п.).
Занятия кружка целесообразно проводить один раз в неделю, выделяя на каждое занятие по одному часу. К организации работы математического кружка целесообразно привлекать самих учащихся (поручать им подготовку небольших сообщений по изучаемой теме, подбор задач и упражнений по конкретной теме, подготовку справок исторического характера, изготовление моделей и рисунков к данному занятию и т. д.). На занятиях математического кружка учитель должен создать "атмосферу" свободного обмена мнениями и активной дискуссии. Тематика кружковых занятий по математике в современной школе весьма разнообразна. В тематике кружковых занятий для 5-11 классов находят место вопросы, связанные с историей математики, жизнью и деятельностью российских и зарубежных известных математиков.
Общая характеристика школьных математических олимпиад. Примеры задач математических олимпиад для 7-9 классов
Школьные математические олимпиады представляют собой более массовые соревнования, поскольку они охватывают учеников не одного, а всех параллельных классов школы.
Олимпиады в школе проводятся несколько раз в год с целью повышения интереса учеников к математике, расширения их мировоззрения, выявления наиболее способных учеников, подведения итогов работы математических кружков или клуба юных математиков, повышение общего уровня преподавания математики в средних и старших классах.
Другие рефераты на тему «Педагогика»:
- Особенности детей "группы риска"
- Методика и технология работы социального педагога с педагогически запущенными детьми
- Редактирование и форматирование текста
- Влияние задач-головоломок на развитие представлений о форме предметов у детей старшего дошкольного возраста
- Роль СМИ и наглядной информации в повышении педагогической культуры родителей
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения