Анализ проблем реформирования курса физики

Невозможно не отметить, что в период перестройки в средней общеобразовательной школе основным принципом являлся политехнизм и соединение обучения школьников с производительным трудом на современной технической и технологической основе. Б.Т. Лихачев отмечал, что «политехнизм необходимо осуществлять с учетом требований НТР, компьютеризации как нового способа мышления, новейших технологий, тесной

связи школ с передовыми предприятиями, научными учреждениями, агропромышленными государственными, колхозными, арендными, подрядными объединениями. Это обеспечивает не только современный уровень среднего образования, но и воспитания интеллектуально-развитого типа личности. Суть политехнизма - в органическом единстве общеобразовательных и политехнических знаний, в применении этих знаний на современном производстве. Научно-теоретическая сущность современного производства становится органической частью общеобразовательного знания. Политехнические сведения пронизывают естественнонаучные предметы и, наряду с этим, могут быть сконцентрированы в специальной учебной дисциплине. Кроме того, необходимо применение учащимися политехнических знаний в условиях современного производства, более глубокое постижение через производство этих знаний, формирование каждым учащимся в себе характера современного индустриального рабочего».

В этих условиях физика, как и другие фундаментальные науки, не являясь профилирующей в технических вузах, но, имеющая мировоззренческое назначение и вместе с математикой призванная формировать фундамент, являющийся основой для прикладных наук, оказалась невостребованной. Например, ни нелинейная наука, ни диссипативные открытые структуры, ни современные достижения в физике конденсированного состояния не были отражены в программах по физике для высшей школы. Лабораторная база физического практикума, за очень редким исключением, фактически пришла в негодность из-за отсутствия материальных средств на ее модернизацию. Создание методической и научно-популярной литературы, учебных пособий по физике фактически никем не контролировалось, несмотря на исключительно большие возможности современных технических средств популяризации знаний.

Уже с 90-х годов в подготовке будущих инженеров стал увеличиваться разрыв между теоретическими знаниями и практической базой из-за сокращения производственных практик. Высшая школа оказалась оторванной не только от производства, но и от настоящей науки. С падением производства все труднее стало осуществлять интеграцию образования, науки и производства. Как известно, востребованность специалистов определяется в основном их способностью быть мобильными и конкурентоспособными в условиях рыночной экономики, а уровень знаний становится важнейшим критерием компетентности. Однако в 90-е годы молодые специалисты в значительной части оказались не готовыми к созданию и использованию технологий новых поколений, не получили должных навыков применения средств автоматизации технологических процессов, проектирования и научных экспериментов, управления производством.

Таким образом, профессионально-техническое образование самым непосредственным образом связано с потребностями производства, с оперативной и сравнительно быстрой формой включения молодых людей в жизнь. Оно непосредственно осуществляется в рамках крупных производственных организаций или государственной системой образования. Возникнув в 1940 году как фабрично-заводское ученичество (ФЗУ), профессионально-техническое образование прошло сложный и извилистый путь развития. И несмотря на различные издержки (попытки перевести всю систему на сочетание полного и специального образования в подготовке необходимых профессий, слабый учет региональных и национальных особенностей), профессионально-техническая подготовка остается важнейшим каналом получения профессии.

Вместе с тем социологические исследования и в 70-80-х годах, и в 90-е годы по-прежнему фиксируют сравнительно невысокий (а по ряду профессий низкий) престиж этого вида образования, ибо ориентация выпускников школы на получение высшего, а затем средне специального образования продолжает преобладать. Что касается среднего специального и высшего образования, для социологии важны выявление социального статуса этих видов обучения молодежи, оценка возможностей и роли в будущей взрослой жизни, соответствие субъективных устремлений и объективных потребностей общества, качество и эффективность подготовки.

Особо остро стоит вопрос о профессионализме будущих специалистов, о том, чтобы качество и уровень современной их подготовки отвечали реалиям сегодняшнего дня. Однако и исследования 80-х, и исследования 90-х годов показывают, что в этом отношении накопилось немало проблем. Продолжает оставаться, как свидетельствуют результаты социологических исследований, невысокой устойчивостью профессиональных интересов молодых людей. По исследованиям социологов до 60% выпускников вузов меняют свою профессию. По данным опроса выпускников техникумов в Москве, только 28% из них спустя три года после получения.

Таким образом, в последней четверти ХХ века наблюдалась парадоксальная ситуация в области физического знания, которая имела специфические характерные черты. Во-первых, не учитывался высокий потенциал физики как фундаментальной науки в системе подготовки инженера. Во-вторых, в процессе обучения физике студентов технических вузов, имело место несоответствие между общеобразовательной значимостью курса физики и поставленными целями и задачами. В - третьих, отсутствие понимания физики не только как научной области, но и как элемента человеческой культуры, техносферы и сферы развития человеческого мышления.

Особенности методической системы обучения физике студентов высших учебных заведений технического профиля и основные требования к ней

Фундаментальность физического образования предполагает, что в высших технических учебных заведениях знания, сформированные у студентов на занятиях по физике, являются фундаментальной базой для изучения общетехнических и специальных дисциплин, освоения новой техники и технологий. Содержание курса физики должно способствовать формированию у студентов представлений о современной физической картине мира. В этом случае физическое образование становится целостным, более того, дисциплины учебного плана оказываются объединенными общей методологией построения, ориентированной на междисциплинарные связи. важно осознавать, что физика является фундаментальной наукой, а инженерно-технические – прикладными. Но их тесная генетическая взаимосвязь часто приводит к тому, что их перестают различать в организационном плане. В то же время, для достижения максимальной эффективности, каждой из них нужны различные, иногда даже противоположные, формы организации.

В процесс обучения, как уже отмечалось, важно акцентировать внимание на формировании целостного представления о структуре материального мира и его законов. Философ и методолог науки Т.Г. Лешкевич утверждает, что «научная картина мира – это целостная система представлений об общих свойствах и закономерностях действительности, построенная в результате обобщения и синтеза фундаментальных научных понятий и принципов. Каждая НКМ строится на основании определенных фундаментальных теорий, по мере развития практики и познания одни научные картины мира меняются другими. НКМ играют эвристическую роль в процессе построения фундаментальных научных теорий. Они тесно связаны с мировоззрением и влияют на его формирование».

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы