Развитие логического мышления школьников на уроках математики
Логическое мышление является высшей ступенью умственного развития ребенка, проходит длительный путь развития. Оно характерно тем, что совершается в форме абстрактных понятий и рассуждений. В сложных мыслительных действиях взрослого имеются элементы всех трех видов мышления, но какой-то один из них обычно преобладает. Так при доказательстве теорем, решении задач доминирует, конечно теоретический
тип мышления, хотя там используются и элементы наглядного действенного и наглядно-образного мышления (построение чертежей, схем, мысленные и практические их преобразования и т.п.).
Одновременное с развитием мышления у ребенка развивается и речь. В речи мысль обретает материальную форму, в которой она только и может быть воспринята другими людьми и самим человеком.
Высокоразвитое мышление вообще невозможно вне речи, оно всегда связано с языком, и речь выступает как материальная оболочка мышления.
Логическое мышление, в отличие от практического, осуществляется только словесным путем. Обучение ребенка доказательству требует от него сформированности умений правильно рассуждать. Что непосредственно обнаруживается через правильность математической речи ребенка. Математическая речь и умение правильно рассуждать тесно связаны друг с другом.
О человеке, у которого хорошо развито логическое мышление, говорят, что он основательно мыслит, дисциплинированно рассуждает. Такой человек, как правило, не допускает ошибок в своих рассуждениях и выводах. Хорошо развитое логическое мышление предостерегает человека от промахов и ошибок в практической деятельности. И это качество развивается главным образом в процессе изучения математики, ибо математика – это практическая логика, в ней каждое новое положение получено с помощью строго обоснованных рассуждений на основе ранее известных положений, т.е. строго доказывается. Математика приучает к логическому мышлению. В математике ученик с наибольшей полнотой, наиболее выпукло и зримо может увидеть демонстрацию почти всех основных законов элементарной логики.
Решение всякой задачи по математике – это, прежде всего, цепь рассуждений. Вычисления, преобразования, построения, которыми так часто приходится пользоваться для решения задач, невозможны без логических рассуждений: они направляются рассуждениями. Значит, в математике невозможно обойтись без логики. Для успешного изучения математики надо настойчиво учиться правильно рассуждать.
Мышление человека, и в частности школьника, наиболее ярко проявляется при решении задач.
Любая мыслительная деятельность начинается с вопроса, который ставит перед собой человек, не имея готового ответа на него. Иногда этот вопрос ставят другие люди (например, учитель), но всегда акт мышления начинается с формулировки вопроса, на который надо ответить, задачи, которую необходимо решить, с осознания чего-то неизвестного, что надо понять, уяснить.
Решение мыслительной задачи начинается с тщательного анализа данных, уяснения того, что дано, чем располагает человек. Эти данные сопоставляют друг с другом и с вопросом, соотносят с прежними знаниями и опытом человека. Человек пытается привлечь принципы, успешно примененные ранее при решении задачи, сходной с новой. На этой основе возникает гипотеза, намечается способ действий, путь решений. Практическая проверка гипотезы, проверка пути решения может показать ошибочность намеченных действий. Тогда ищут новую гипотезу, другой способ действия, причем здесь важно тщательно уяснить причины предшествующей неудачи, сделать из нее соответствующие выводы.
Связь речи и мышления не только позволяет глубже проникать в явления действительности, в отношения между вещами, действиями, качествами, но и располагает системой синтаксических конструкций, которые дают возможность сформулировать мысль, выразить суждение. Речь располагает более сложными образованиями, которые дают основу для теоретического мышления и которые позволяют человеку выйти за пределы непосредственного опыта и делать выводы отвлеченным вербально-логическим путем. К числу аппаратов логического мышления относятся и те логические структуры, моделью которых является силлогизм. Переход к сложным формам общественной деятельности дает возможность овладеть теми средствами языка, которые лежат в основе наиболее высокого уровня познания – теоретического мышления.
Пути и средства развития логического мышления
Развитие мышления при изучении математики состоит в формировании у учащихся характерных для этого предмета приемов мыслительной деятельности. При этом важно, чтобы в структуру умственной деятельности школьников помимо алгоритмических умений и навыков, фиксированных в стандартных правилах, формулах и способах действий, вошли эвристические приемы, которые необходимы для решения творческих задач, применение знаний в новых ситуациях, доказательства высказываемых утверждений.
Процесс обучения предполагает целенаправленное управление мыслительной деятельностью учащихся, что приводит к продвижению учеников в их умственном развитии. Чтобы развить мышление учащихся, нужно показать им как функционирует мышление на практике. Развитие происходит в деятельности, поэтому необходимо создавать ученикам условия соответствующей деятельности, нужно демонстрировать сложную картину поиска решения, всю трудность этой работы. В этом случае ученики становятся активными участниками процесса поиска решения, начинают понимать источники возникновения решения. Как результат - ими легче осваиваются причины ошибок, затруднений, оценивается найденный способ решения и ход логических мыслей, а без этого знания не могут перейти в убеждения.
Системное развитие логического мышления должно быть неотрывно от урока, каждый ученик должен принимать участие в процессе решения не только стандартных заданий, но и задач развивающего характера (активно или пассивно).
На уроках учитель должен моделировать ту умственную деятельность, которая нужна на данном этапе развития (учить анализировать задачи, делать чертежи, выявлять отношения объектов и т.д.). Это имеет обучающее и воспитывающее значение: учащиеся приобщаются к методу поиска, ориентируются не только на результат, но и на процесс его достижения, т.е. учатся мыслить логически.
Можно выделить два подхода к формированию и становлению логико-математического мышления:
1. традиционное обучение, приводящее в зависимости от воздействия и других объективных причин к формированию либо эмпирического, либо теоретического мышления;
2. специально организованное обучение, ориентированное на формирование учебной деятельности, приводящее к становлению теоретического мышления.
Для формирования логического мышления приоритетным является второй подход.
Основным средством развития математических способностей учащихся являются задачи. Не случайно известный современный математик Д.Пойа пишет: «Что значит владение математической? Это есть умение решать задачи, причем не только стандартные, но и требующие известной независимости мышления, здравого смысла, оригинальности, изобретательности».
Другие рефераты на тему «Педагогика»:
- Музыкальное воспитание как составная часть учебно-воспитательного процесса
- Пришкольный оздоровительный лагерь "Веселая планета"
- Воспитание целеустремленности в игровой деятельности детей старшего дошкольного возраста
- Роль дистанционного обучения в организации самостоятельной когнитивной деятельности учащихся
- Характеристика инновационных технологий в образовательных учреждениях Казахстана
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения