Развитие логического мышления школьников на уроках математики
Одна из главных причин затруднений учащихся, испытываемых ими при решении задач, заключается в том, что математические задачи, содержащиеся в основных разделах школьных учебников, как правило, ограничены одной темой. Их решение требует от учащихся знаний, умений и навыков по какому-нибудь одному вопросу программного материала и не предусматривает широких связей между различными разделами школьн
ого курса математики. Роль и значение таких задач исчерпываются в течении того непродолжительного периода, который отводиться на изучение (повторение) того или иного вопроса программы. Функция таких задач чаще всего сводиться к иллюстрации изучаемого теоретического материала, к разъяснению его смысла. Поэтому учащимся нетрудно найти метод решения данной задачи. Этот метод иногда подсказывается названием раздела учебника или задачника, темой, изучаемой на уроке, указаниями учителя и т. д. Самостоятельный поиск метода решения учеником здесь минимален. При решении задач на повторение, требующих знания нескольких тем, у учащихся, как правило, возникают определенные трудности.
К сожалению, в практике обучения математике решение задач чаще всего рассматривается лишь как средство сознательного усвоения школьниками программного материала. И даже задачи повышенной трудности специальных сборников, предназначенных для внеклассной работы, в основном имеют целью закрепление умений и навыков учащихся в решении стандартных задач, задач определенного типа. А между тем функции задач очень разнообразны: обучающие, развивающие, воспитывающие, контролирующие.
Каждая предлагаемая для решения учащимся задача может служить многим конкретным целям обучения. И все же главная цель задач — развить творческое мышление учащихся, заинтересовать их математикой, привести к «открытию» математических фактов. Достичь этой цели с помощью одних стандартных задач невозможно, хотя стандартные задачи, безусловно, полезны и необходимы, если они даны вовремя и в нужном количестве. Следует избегать большого числа стандартных задач как на уроке, так и во внеклассной работе, так как в этом случае сильные ученики могут потерять интерес к математике и даже испытать отвращение к ней. Ознакомление учащихся лишь со специальными способами решения отдельных типов задач создают, на наш взгляд, реальную опасность того, что учащиеся ограничатся усвоением одних шаблонных приемов и не приобретут умения самостоятельно решать незнакомые задачи ("Мы такие" задачи не решали",— часто заявляют учащиеся, встретившись с задачей незнакомого типа).
В системе задач школьного курса математики, безусловно, необходимы задачи, направленные на отработку того или иного математического навыка, задачи иллюстративного характера, тренировочные упражнения, выполняемые по образцу. Но не менее необходимы задачи, направленные на воспитание у учащихся устойчивого интереса к изучению математики, творческого отношения к учебной деятельности математического характера. Необходимы специальные упражнения для обучения школьников способам самостоятельной деятельности, общим приемам решения задач, для овладения ими методами научного познания реальной действительности и приемам продуктивной умственной деятельности, которыми пользуются ученые-математики, решая ту или иную задачу. Осуществляя целенаправленное обучение школьников решению задач, с помощью специально подобранных упражнений, можно учить их наблюдать, пользоваться аналогией, индукцией, сравнениями, и делать соответствующие выводы.
Необходимо на уроках систематически использовать задачи, способствующие целенаправленному развитию творческого мышления учащихся, их математическому развитию, формированию у них познавательного интереса и самостоятельности. Такие задачи требуют от школьников наблюдательности, творчества и оригинальности.
Эффективное развитие математических способностей у учащихся невозможно без использования в учебном процессе задач на сообразительность, задач-шуток, математических ребусов, софизмов.
В качестве средств развития логического мышления могут выступать занимательные задачи (задачи «на соображение», головоломки, нестандартные задачи, логические задачи).
Занимательный материал многообразен, но его объединяет следующее:
1) способ решения занимательных задач не известен. Для их решения характерно, броуновское движение мысли, т.е. к решению приводит метод проб и ошибок. Поисковые пробы решения могут в отдельных случаях закончиться догадкой, которая представляет собой нахождение пути искомого решения.
2) занимательные задачи способствуют поддержанию интереса к предмету и играют роль мотива к деятельности учащихся. Необычность сюжета, способа презентации задачи находят эмоциональный отклик у детей и ставят их в условия необходимости ее решения;
3) занимательные задачи составлены на основе знаний законов мышления.
Систематическое применение задач такого вида способствует развитию указанных мыслительных операций и формированию математических представлений детей. Для решения таких задач характерен процесс приисковых проб. Появление догадки свидетельствует о развитии у детей таких качеств умственной деятельности, как смекалка и сообразительность. Смекалка – это особый вид проявления творчества. Она выражается в результате анализа, сравнений, обобщений, установления связей, аналогии, выводов, умозаключений. О проявлениях сообразительности свидетельствует умение обдумывать конкретную ситуацию, устанавливать взаимосвязи, на основе которых решающий задачу приходит к выводам, обобщениям. Сообразительность является показателем умения оперировать знаниями. Из этого следует, что смекалка, сообразительность, влекущие за собой догадку как результат поиска решения занимательной задачи, не есть что-то данное свыше. Эти качества умственной деятельности можно и нужно развивать в процессе обучения.
В любом случае догадке как способу решения задачи предшествует тщательный анализ: выделение в задаче существенных признаков, пространственного расположения и обобщения ряда фигур, их свойств, сходных признаков и т.п. Однако для решения занимательных задач метод проб и ошибок ненадежен и нерационален. Гораздо более эффективный способ – вооружить детей теми приемами умственной деятельности, которые необходимы при этом: анализ и синтез, сравнение, аналогия, классификация. Предлагая учащимся занимательные задачи, мы формируем у них способность выполнять эти операции и одновременно развиваем их.
Конечно, нельзя приучать учащихся решать только те задачи, которые вызывают у них интерес. Но нельзя и забывать, что такие задачи учащийся решает легче и свой интерес к решению одной или нескольких задач он может в дальнейшем перенести и на «скучные» разделы, неизбежные при изучении любого предмета, в том числе и математики. Таким образом, учитель, желающий научить школьников решать задачи, должен вызвать у них интерес к задаче, убедить, что от решения математической задачи можно получить такое же удовольствие, как от разгадывания кроссворда или ребуса.
Задачи не должны быть слишком легкими, но и не должны быть слишком трудными, так как учащиеся, не решив задачу или не разобравшись в решении, предложенном учителем, могут потерять веру в свои силы. Не следует предлагать учащимся задачу, если нет уверенности, что они смогут ее решить. Ну а как же помочь учащемуся научиться решать задачи, если интерес к решению задач у него есть и трудности решения его не пугают? В чем должна заключаться помощь учителя ученику, не сумевшего решить интересную для него задачу? Как эффективным образом направить усилия ученика, затрудняющегося самостоятельно начать или продолжить решение задачи?
Другие рефераты на тему «Педагогика»:
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения