Основные формы внеклассных занятий по математике в начальной школе и методика их проведения

Пробудившийся интерес необходимо поддерживать на протяжении всего занятия, чтобы детям захотелось вернуться к подобной деятельности. Поддерживая интерес различными приемами, надо его постепенно воспитывать: в начале, как интерес к своей непосредственной деятельности во время внеклассных занятий, затем чтобы он перерастал в интерес к математике как к науке, в интерес к процессу самой мыслительно

й деятельности, к новым знаниям в области математике. При организации внеклассной работы по математике надо добиваться максимальной деятельности каждого ученика – организаторской, трудовой, особенно мыслительной для выполнения всевозможных заданий. Для поддержания интереса необходимо, чтобы материал был понятен каждому ученику.

4.Занимательность.

Занимательность служит тем же педагогическим целям, что и интерес. Истинная занимательность предназначена привлекать внимание, активизировать мысль, возбуждать интерес к предмету и желание им заниматься. Она всегда несет в себе черты остроумия и придает задаче оттенок игры. Через занимательность проникает в сознание ощущение прекрасного в математике, которое при последующем изучении предмета дополняется пониманием прекрасного.

Занимательность – это не развлечение детей пустыми забавами, а занимательность содержания математических задач, либо формы, в которую они облекаются. Педагогически оправданная занимательность имеет целью привлечь внимание детей, усилить его, активизировать их мыслительную деятельность. Занимательность в этом смысле на внеклассных занятиях всегда несет элемент остроумия, игрового настроя, праздничности. Она служит основой для проникновения в сознание ребенка чувства прекрасного в самой математике. К эстетическим элементам занимательности относятся: легкий юмор фабулы, неожиданность ситуаций или развязки, стройность геометрической формы, изящество решения, под которым понимается сочетание простоты и оригинальности методов его получения. Этими признаками истинной занимательности обладают все лучшие произведения коллекции математической смекалки.

Одним из видов занимательности является поэтическая форма математической информации, предназначенная для получения эффекта как художественного, так и педагогического. Стихотворный текст применяется, как один из мнемонических приемов запоминания.

Еще Б. Паскаль говорил: «Предмет математики настолько серьезен, что полезно не упускать случаев делать его немного занимательным». Однако следует избегать ложной занимательности, если она приводит к неряшливости в математических выражениях, к вульгаризации отдельных математических положений, к некорректности в изложении, к нелепым решениям и рассуждениям.

5.Общедоступность.

Общедоступность – это одно из достоинств математических развлечений, так как решение большинства задач этой категории опирается на весьма скромную математическую базу, в основном арифметическую. Решение некоторых задач может быть простым, доступным для понимания, но не каждый может сообразить, как решить эту задачу.

«У одного человека был золотой крест, украшенный бриллиантами. Этот человек никогда не интересовался тем, сколько всего бриллиантов вставлено в крест. Он знал лишь одно: если начать считать с одного из боковых концов или с верхнего конца вниз, то всегда окажется 6 бриллиантов.

Однажды этот крест был отдан в починку золотых дел мастеру. Мастер потерял 2 бриллианта и, не вставляя на их место других, вернул крест починенным, лишь расположив бриллианты по-другому. Владелец пересчитал бриллианты «по-своему» и ничего не заметил.

Как мастер ухитрился расположить бриллианты?»

Значение задач математических развлечений состоит так же в том, что почти все они не меньше, чем школьные упражнения, педагогически целенаправленны: одни – на укрепление навыков логического мышления, другие – на укрепление правильности математической речи, третьи – на развитие осторожности в суждениях «по аналогии», иные – на расширения представлений о разнообразии и красоте геометрических форм, представле­ний о связях математики с практической деятельностью, на укрепление конструктивных навыков самостоятельной работы и так далее, а все в совокупности – на общие повышение математической культуры и развития математических способностей тех, кто систематически упражняется в решении задач подобного рода.

Соболевский Р.Ф. рассматривал, как одни из видов математических развлечений, логические упражнения. На внеклассных занятиях по математике в процессе логических упражнений дети практически учатся сравнивать математические объекты, выполнять простейшие анализа и синтеза, устанавливать связи между родовыми и видовыми понятиями. Проводя анализ, ученик в математических объектах выделяет существенные признаки, которые должны удовлетворять определенным психическим и дидактическим требованиям.

Для повышения эффективности обучения и развития детей следует позаботиться прежде всего о содержании предлагаемых задач, их потенциальных дидактических возможностях и методике работы с ними. В этом смысле заслуживают внимания задачи, допускающие не одно возможное решение, а несколько (здесь имеются в виду не разные способы нахождения одного и того же ответа, а существование разных решений-ответов и их поиск, то есть решение рассматривается не как процесс, а как результат-ответ).

Необходимость в использовании таких задач особенно остро ощущается в условиях дифференцированного и индивидуализированного обучения. Останина Е.Е. отмечает: «Одно дело, когда ребенок поставлен в рамки отыскания единственного возможного решения, и другое – когда перед ним открывается многоходовой, со многими выходами лабиринт. В первом случае – все или ничего, во втором – движение по ступенькам разного уровня. В зависимости от знаний, способностей и развития один ученик может подняться на одну ступеньку, другой – на две, третий – на три и так далее. Задача в этом случае не сковывает ученика жесткими рамками одного решения, а открывает ему возможность для поисков и размышлений, исследований и открытий, пусть на первый раз и маленьких. И оценивать при этом деятельность ученика удается в зависимости от того, кто сколько нашел решений».

Задачи с многовариантными решениями весьма полезны для внеклассных занятий в качества олимпиадных заданий, так как открываются возможности по-настоящему дифференцировать результаты каждого участника. Такие задачи могут с успехом использоваться и в качестве дополнительных индивидуальных заданий для тех учеников, которые легко и быстро справляются с основными во время самостоятельной работы на уроке, или для желающих в качестве дополнительных домашних заданий.

Большое значение, особенно для самых юных математиков, имеют задачи в стихах. Такие задачи интересны и доступны детям. Они вносят некоторую живость в занятие, воспринимаются детьми как некоторая игра. Кроме того, они воспитывают и эстетические чувства. Такие стихотворные задания учителю не сложно сочинить и самому, взяв за основу какую-либо задачу, можно использовать и стихи детских авторов, задав после прочтения вопрос.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы