Формирование вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта
Тугоподвижность мышления умственно отсталых проявляется в «буквальном переносе» имеющихся знаний без учета ситуации, без изменений этих знаний в соответствии с новыми условиями. Преобразования и действия с числами, выраженными в мерах времени, они выполняют так же, как с числами, выраженными в метрической системе мер. Причина таких ошибок не только в незнании соотношения мер, но и в особенностя
х мышления учащихся: они редко подвергают задания предварительному анализу, с трудом актуализируют адекватные заданию знания.
«Буквальный перенос» наблюдается и при решении задач. Особенно часто это проявляется при переходе от решения простых задач к составным (во 2—3-х классах составная задача в два действия решается одним действием). В 4—5-х классах, когда большинство задач решается в 2—3 действия, учащиеся, наоборот, простые задачи решают двумя и даже тремя действиями, привнося лишние действия.
Несовершенство анализа приводит к тому, что умственно отсталые школьники сравнение задач, геометрических фигур, примеров, математических выражений проводят поверхностно, не проникая во внутренние связи и отношения. Например, если даны две задачи одного вида, но с различными ситуациями, умственно отсталые учащиеся не устанавливают их сходства. Ученик руководствуется при сравнении лишь внешними признаками, не проникая в математическую сущность задачи, не вскрывая отношений между числовыми данными.
Умственно отсталые учащиеся исходят при решении задач или выполнении заданий из несущественных признаков, руководствуются отдельными словами и выражениями или пользуются усвоенными ранее схемами-шаблонами. Это приводит к тому, что, не умея отойти от этих штампов, ученик нередко дополняет условие задачи, чтобы подвести ее под определенную, известную ему схему. Он вводит слова всего, осталось, стало, вместе и на их основе выбирает действия.
А вот пример сравнения геометрических фигур. «В чем различие квадрата и прямоугольника?» — спрашивает учитель. «Они не похожи сторонами». — «В чем их сходство?» — «У них углы, стороны» (4-й класс). Нередко при сравнении наблюдается «соскальзывание» на несоотносимые элементы. «Эта лента длинная, а эта красная».
При сравнении задач, числовых выражений, геометрических фигур дефекты мышления проявляются в трудностях перехода от выявления сходства к установлению на этой основе общности и от выявления различия к установлению своеобразия в геометрических фигурах: круге, квадрате, треугольнике и прямоугольнике. Ученики 1-го класса коррекционной школы не видят сходства. Например, Алик (8 лет 9 мес.) поочередно берет круг и треугольник, круг и прямоугольник, накладывает друг на друга и говорит: «Не похожи». Похожих фигур сам Алик не находит. Когда экспериментатор кладет перед ним квадрат и прямоугольник, то мальчик долго смотрит на них, кладет одну фигуру на другую, но сходства не видит. «Эта какая большая (прямоугольник), а эта квадратная. Не похожи».
У умственно отсталых школьников снижена способность к обобщению. Это проявляется в трудностях формирования математических понятий, усвоения законов и правил. С трудом формируются понятия числа, счета, усваиваются закономерности десятичной системы счисления. Например, ученик 1-го класса коррекционной школы, умея пересчитывать палочки, нередко отказывается от пересчета шишек или других предметов, которые раньше не употреблялись как объекты счета. Затрудняет учащихся счет непривычно расположенных предметов (вертикально, вразброс, рядами). Это свидетельствует о том, что ребенок заучил названия числительных по порядку, однако понятия и навыки счета у него не сформированы.
Слабость обобщений проявляется в механическом заучивании правил, без понимания их смысла, без осознания того, когда их можно применить. Например, ученик знает переместительное свойство сложения, но при решении примеров его не использует.
Низкий уровень мыслительной деятельности школьников с нарушением интеллекта затрудняет переход от практических действий к умственным. В отличие от нормально развивающихся детей и детей с задержкой психического развития, для формирования у умственно отсталых учащихся представлений о числе, счете, арифметических действиях и др. требуется развернутость всех этапов формирования умственных действий.
Недостатки гибкости мышления проявляются в подборе примеров к правилам, при составлении задач: учащиеся нередко составляют задачи с одинаковой фабулой, повторяющимися глаголами, числовыми данными, вопросами и т.д.
Школьники с нарушением интеллекта в силу неумения мыслить обратимо с большим трудом связывают взаимообратные понятия и, усвоив одно из них, могут не иметь представления о другом, обратном (много — мало, вверху — внизу и т.д.), не связывают их в пары, воспринимают обособленно, затрудняются в сравнении чисел, установлении отношений эквивалентности и порядка при изучении отрезков натурального ряда чисел.
У учащихся школы VIII вида имеют место недостатки и своеобразие общего речевого развития. В олигофренопсихологии отмечаются недостаточность и своеобразие их собственной речи, трудности в понимании обращенной к ним речи.
Бедность словаря, непонимание значения слов и выражений создают значительные трудности в обучении математике, особенно в обучении решению задач. Нередко учащиеся не решают задачу потому, что не понимают значения слов, выражений, предметной ситуации задачи, а также той математической «нагрузки», которую несут такие слова, как другой, второй, оба, каждый, столько же.
Бедность словаря проявляется и при составлении задач: учащиеся оперируют словами-штампами, не могут избежать слов-штампов в формулировке вопросов, заменяя специфические слова в вопросах общим словом сколько.
Из-за слабости регулирующей функции речи ученику коррекционной школы трудно полностью подчинить свое действие словесному заданию. Например, задание посчитать до заданного числа или от заданного до заданного числа, несмотря на его правильное восприятие, нередко выполняется стереотипно — ученик считает от 1 до 10 и обратно от 10 до 1.
Учащиеся школы VIII вида испытывают затруднения в использовании имеющихся знаний в новой ситуации, а также в практической деятельности. Причиной этого являются трудности переноса знаний без критического отношения к ним, без учета ситуации, трудности актуализации имеющихся знаний, а также, по выражению Ж. И. Шиф, отсутствие «гибкости ума», трудности обобщений при решении новых задач умственно отсталыми школьниками. Например, зная таблицу умножения, ребенок испытывает затруднения в ее использовании при решении примеров и задач в учебных мастерских. Ученик на уроке математики может хорошо ответить на вопросы, выявляющие знания соотношения мер длины, но быть беспомощным в учебной мастерской, когда 1 см 5 мм ему надо выразить в миллиметрах. Он может хорошо различать виды углов на моделях геометрических фигур, но не сможет выделить указанный угол на изделии (например, табурете). Ученик на уроке математики ответит таблицу деления на 2, но затрудняется, когда надо разделить на две равные части числа, полученные при снятии мерки в швейной мастерской.
Другие рефераты на тему «Педагогика»:
- Применение дидактических игр в развитии словарного запаса детей младшего дошкольного возраста
- Проблемы развития личности в современной педагогической антропологии
- Тестирование в учебной деятельности
- Половое воспитание. Когда начинать
- Развитие творческих способностей дошкольников в музыкальной деятельности
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения