Формирование вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта

Здесь будут раскрыты только общие трудности усвоения математики, которые объясняются особенностями психофизического развития учащихся коррекционной школы. Трудности и особенности усвоения различных разделов математики (овладение нумерацией, арифметическими действиями, решением задач, геометрическими понятиями и т.д.) будут раскрыты в соответствующих главах при изложении частных вопросов методик

и математики.

Наблюдения и специальные исследования показывают, что узость, нецеленаправленность и слабая активность восприятия создают определенные трудности в понимании задачи, математического задания. Учащиеся воспринимают задачу не полностью, а фрагментарно, т.е. по частям, а несовершенство анализа и синтеза не позволяет эти части связать в единое целое, установить между ними связи и зависимости и, исходя из этого, выбрать правильный путь решения.

Воспринимая задачу фрагментарно, ученик и решает ее на основе воспринятого фрагмента. Фрагментарность восприятия является одной из причин ошибочного вычисления значения числовых выражений, содержащих два действия вида.

Слабая активность восприятия приводит к тому, что учащиеся не узнают знакомые геометрические фигуры, если они даются в непривычном положении или их нужно выделить в предметах, найти в окружающей обстановке. Они не могут найти в задаче числовые данные, если они записаны не цифрами, а словами, выделить вопрос, если он стоит не в конце, а в начале или в середине задачи, и т.д.

Трудности при обучении математике вызываются также несовершенством зрительных восприятий (зрительного анализа и синтеза) и моторики учащихся. Это проявляется в обучении письму вообще и цифр в частности. У школьников с нарушением интеллекта младших классов нередко наблюдается зеркальное письмо цифр.

Учащиеся часто путают цифры 3, 6 и 9, 2 и 5,7 и 8 и при чтении, и при письме под диктовку. Причиной слабого различения цифр 7 и 8 является, очевидно, и несовершенство слуховых восприятий: учащиеся не различают на слух слова семь — восемь. Учащиеся нередко строят цифры, а не пишут: например, при написании цифры 1 сначала пишут вертикальную палочку, а потом к ней пристраивают крючочек справа, пишут цифру снизу вверх (не запоминают, с какого элемента надо начинать написание цифры).

Затрудненность письма у некоторых учащихся усугубляется тремором (дрожанием) рук, параличами. Нарушение координации движений у отдельных учащихся нередко служит причиной очень сильного нажима при письме, который приводит к поломке карандаша и прорыву бумаги.

Несовершенство зрительных восприятий, трудности пространственной ориентировки приводят к тому, что учащиеся не видят строки и не понимают ее значения. Поэтому ученик может начать писать строчку цифр в левом верхнем углу тетради, а закончить ее в правом нижнем углу, т.е. располагает цифры по диагонали, также располагает и строчки примеров, не соблюдает высоту цифр, интервалов.

Письмо цифр, примеров из года в год совершенствуется, так как в процессе обучения корригируется моторика, зрительные восприятия. Однако и в старших классах еще наблюдаются случаи размашистого, неустойчивого почерка. Эта особенность некоторых умственно отсталых школьников затрудняет производить вычисления в столбик, так как такие ученики не соблюдают поразрядность в записи примеров, а отсюда ошибки в вычислениях.

Несовершенство моторики школьников с нарушением интеллекта (двигательная недостаточность, скованность движений или, наоборот, импульсивность, расторможенность) создает значительные трудности в пересчете предметов: ученик называет один предмет, а берет или отодвигает сразу несколько предметов, т.е. называние чисел опережает показ или, наоборот, показ опережает называние чисел.

Известно, что у умственно отсталых школьников с большим трудом вырабатываются новые условные связи, особенно сложные, но, возникнув, они оказываются непрочными, хрупкими, а главное, недифференцированными. Слабость дифференциации нередко приводит к уподоблению знаний. Учащиеся быстро утрачивают те существенные признаки, которые отличают одну фигуру от другой, один вид задачи от другого, те признаки, которые позволяют различать числа, действия, правила и т. д. Уподобление наблюдается и у учащихся массовой школы, но это происходит реже, когда знания забываются, сглаживаются или плохо усвоены по той или иной причине. У умственно отсталых школьников наблюдается грубое уподобление. Например, получив задание найти похожие геометрические фигуры, учащиеся отбирают и квадраты, и прямоугольники, и треугольники; единицы длины они уподобляют единицам массы, стоимости, площади (расстояние измеряется килограммами, квадратными метрами: 100 кв. м=100 р.). Уподобляются задачи, в которых есть хоть какое-то внешнее сходство (простые задачи уподобляются сложным, и наоборот) и т.д.

Причины уподобления знаний неоднородны. Одна из причин, как указывает Ж. И. Шиф, состоит в том, что приобретенные знания сохраняются неполно, неточно, объединение знаний в системы происходит с трудом, системы этих знаний недостаточно расчленены.

Другая причина слабой дифференцированности математических знаний кроется в отрыве математической терминологии от конкретных представлений, реальных образов, объектов, в непонимании конкретной ситуации задачи, математических зависимостей и отношений между данными, а также между данными и искомыми. Например, учащиеся не представляют себе реально таких единиц измерения, как километр и килограмм, а некоторое сходство в их звучании приводит к их уподоблению.

Трудности в обучении математике учащихся школы VIII вида обусловливаются косностью и тугоподвижностью процессов мышления, связанных с инертностью нервных процессов. Проявление этих процессов мышления умственно отсталых при обучении математике многообразно.

Отмечается «застревание» на принятом способе решения примеров, задач, практических действий. С трудом происходит переключение с одной умственной операции на другую, качественно иную. Например, учащиеся, научившись складывать и вычитать приемом пересчитывания, с большим трудом овладевают приемами присчитывания и отсчитывания.

При вычислении значения числовых выражений, содержащих два разных действия, например сложение и вычитание, ученик, выполнив одно действие, не может переключиться на выполнение другого действия.

Учащиеся школы VIII вида нередко записывают ответ первого примера в ответы всех последующих примеров, т.е. наблюдается явление персеверации

Недостатки мышления проявляются также в стереотипности ответов. Например, задание посчитать от 5 до 8 выполняется нередко умственно отсталым учеником на основе стереотипно заученного числового ряда. Он считает от 1 до 10 (1, 2, 3, 10). На вопрос учителя: «Сколько будет, если 2x4?» — умственно отсталый ученик воспроизводит таблицу умножения числа 2. При этом он забывает, зачем он это делает, так как не удерживает в памяти задание, «теряет» его. Косность мышления проявляется в «приспосабливании» заданий к своим знаниям и возможностям.

Эта особенность проявляется и при воспроизведении задач. Задачу на нахождение неизвестного компонента ученик воспроизводит как задачу на нахождение результата, т.е. более привычную. Например, задачу: «У девочки было 3 конфеты. Несколько конфет она съела, осталась у нее одна конфета. Сколько конфет съела девочка?» — ученик 4-го класса воспроизводит так: «У Девочки было 3 конфеты, она съела одну конфету. Сколько конфет у нее осталось?»

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы