Формирование вычислительных навыков в пределах 5 у детей младшего школьного возраста с нарушениями интеллекта
При изучении данной темы учащиеся должны овладеть вычислительными приемами, получить прочные вычислительные навыки, заучить результаты сложения и вычитания в пределах 10, а также состав чисел первого десятка, узнавать и показывать компоненты и результаты двух арифметических действий (сложения и вычитания) и понимать их названия в речи учителя.
В основе сложения и вычитания в пределах 10 леж
ат операции с предметными совокупностями и некоторые вычислительные приемы. Изучение состояния знаний учащихся, поступивших в 1-й класс вспомогательной школы, показывает, что большинство из них либо вообще не имеют представления о действиях сложения и вычитания и вычислительных приемах, либо находят результаты этих действий путем операций над предметами. Поэтому обучение учащихся арифметическим действиям сложения и вычитания необходимо начать с этапа овладения всеми учащимися операциями над предметными совокупностями. Предметно-практическая деятельность детей сопровождается счетом: «К одной лампочке прибавить еще одну лампочку. Сколько получится лампочек?» Это записывается так: 1 + 1=2. Учащиеся на партах прибавляют к одному предмету еще один предмет и пересчитывают результат.
Запись примеров идет на доске и в тетрадях. Учащиеся учатся читать пример: «К одному прибавить один, получится два». На этом же уроке учащиеся знакомятся с решением и записью примеров на вычитание. Пример читают так: «От двух отнять один, получится (останется) один».
Одновременно на этом же этапе организуются наблюдения учащихся над свойством сложения. Учитель показывает, что если к двум красным кругам прибавить один зеленый, то получится три круга. И наоборот: если к одному зеленому кругу прибавить два красных, тоже получится три круга. Учащиеся наблюдают переместительное свойство сложения. Учитель обращает внимание на перестановку групп предметов, чисел в примерах и неизменность при этом результата. Учащиеся подводятся к доступным им обобщениям.
По мере овладения учащимися натуральной последовательностью чисел и свойством этого ряда (каждое число меньше следующего за ним на единицу и больше стоящего перед ним на единицу) нужно знакомить их и с приемом сложения и вычитания, опирающимся на это свойство натурального ряда чисел. Дети учатся этим приемом прибавлять и вычитать единицу из числа, т. е. присчитывать и отсчитывать по 1.
Пособием для овладения этим приемом должен быть натуральный ряд чисел от 1 до числа, которое учащиеся изучают. (Числовой ряд постоянно должен находиться на наборном полотне в классе и на партах учащихся.) Например, надо решить: 3+1. Учитель показывает цифру 3 в числовом ряду и просит найти число на 1 больше. Это следующее в числовом ряду число 4, значит, 3+1=4. Пример 3—1 решается так: находим число 3, число на единицу меньше — это число, которое стоит перед числом 3, т. е. число 2. Значит, 3—1=2. Дети успешно пользуются табличкой числового ряда, которая помогает овладеть вычислительным приемом без опоры на конкретный материал.
Когда учащиеся научились прибавлять и вычитать по 1, надо учить их прибавлять по 2: к четырем прибавить 2. Ученик ставит палец на число 4 в числовом ряду, прибавляет 1, получилось 5, еще прибавляет 1, получилось 6. Палец ученика скользит по числовому ряду.
С первых уроков математики целесообразно обучать комментировать свою деятельность с предметами и числами. Сначала учитель сам комментирует производимые им совместно с учениками действия, а учащиеся повторяют. Постепенно доля самостоятельности в комментировании деятельности у учащихся увеличивается, а помощь со стороны учителя уменьшается.
Переходным этапом от операций над конкретными множествами к действиям над числами является знакомство учащихся (при выполнении сложения и вычитания) с приемом присчитывания и отсчитывания нескольких единиц.
При использовании приема присчитывания учащиеся пересчитывают первое множество, запоминают это число, к нему по одному присчитывают элементы второго множества и сразу говорят сумму. Например: 2+2 = ? Учитель говорит: «Сосчитаем яблоки в корзине. Их 2. Нужно прибавить к ним еще 2 яблока. Узнаем, сколько всего яблок в корзине. Считать будем так: к двум прибавим еще 1, будет 3 и еще 1, будет 4. В корзине 4 яблока, значит 2+2=4. Проверим, что в корзине 4 яблока (пересчитаем)». Затем учащиеся не пересчитывают первое множество, а сразу называют число. В коробке 3 карандаша. Прибавим еще 2 карандаша. Считаем так: к трем прибавим 1, будет 4, прибавим 1, будет 5.
Когда учащиеся овладели приемом присчитывания, учитель знакомит их с приемом отсчитывания: 5—2 = ? На наборном полотне выставляются 5 кругов. Нужно отнять 2 круга. Отсчитываем 1, осталось 4, отсчитываем еще 1, осталось 3, значит, 5—2=3.
Если приемом присчитывания ученики 1-го класса овладевают довольно быстро, то приемом отсчитывания — намного медленнее. Особенно это относится к ученикам со значительной степенью умственной отсталости. Трудность состоит в том, что прием отсчитывания основан на хорошем знании обратного счета, а обратный счет для многих учащихся 1-го класса труден. Кроме того, ученики плохо запоминают, сколько нужно отнять, сколько уже отняли, сколько еще надо отнять.
При изучении каждого числа первого десятка учащиеся получают представления и о составе этих чисел. Состав чисел усваивается учащимися при объединении двух предметных совокупностей, а также разложении их на две группы и определении количества предметов в каждой группе. Например, при изучении числа 5 учащиеся отсчитывают 5 предметов и раскладывают их на две группы, пересчитывают предметы в каждой группе и обозначают их количество соответствующей цифрой. Затем группы предметов меняют местами. На наборном полотне составляется таблица
Необходимо чаще для отыскания ответа при вычитании отсылать учащихся к таблице сложения. Например, при решении примера 7—3 учащиеся должны в таблице сложения отыскать пример 3+4=7. Полезно решать сразу три примера 3+4, 7—3, 7—4, сопоставляя их. По примеру на сложение 5+2=7 учитель также учит детей составлять и решать два примера на вычитание с теми же числами: 7—2, 7—5.
Решение и сопоставление подобных примеров, а впоследствии и составление по одному примеру на сложение других трех, не только способствует осознанию взаимосвязи между действиями и запоминанию табличного сложения и вычитания, но и играет огромную корригирующую роль. Анализ, сравнение будят мысль ребенка, заставляют его сознательно подходить к выполнению действий. Надо помнить о том, что ученик 1-го класса, как бы много подобных упражнений он ни выполнял, не вскроет заложенных в этих примерах зависимостей. Учитель своими заданиями по выделению признаков сходства, различия, организацией наблюдений над изменением компонентов действий способствует активизации мыслительной деятельности, преодолению косности и формализма в знаниях.
Уже в 1-м классе при изучении чисел первого десятка важно обратить внимание учащихся на то, что складывать можно любые числа, а вычитать — только из большего числа меньшее, что решить пример вида 3—4 нельзя. Если учитель не обратит внимание умственно отсталых школьников на это, то они допускают ошибки и при решении и при составлении примеров на вычитание: вычитают из меньшего числа большее, составляют примеры вида 5—7=2.
Другие рефераты на тему «Педагогика»:
- Игра как средство эстетического воспитания детей дошкольного возраста
- Особенности представлений об окружающем мире умственно-отсталых детей
- Влияние экологизированных игровых обучающих ситуаций на процесс экологического воспитания дошкольников
- Формирование технологической компетентности у детей с отклонениями в развитии на уроках "Технологии" в школе-интернате II вида для слабослышащих детей
- Формирование милосердия у подростков
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения