Методика работы с уже решенной задачей на примере ее преобразования на уроках математики в начальной школе

Умение решать задачи также может быть сформировано на разном уровне. На их основе мы разработали 4 типа задания:

1 тип задания - узнавание

Если в задаче заданы цель, ситуация и действия по ее решению, а от учащихся требуется дать заключение о соответствии всех трех компонентов в структуре задачи, это деятельность по узнаванию. Учащиеся могут ее выполнять только при повторном воспроизвед

ении ранее усвоенной информации об объектах процессах или действиях с ними.

Например, дан текст «В лагерь приехали 2 группы детей по 9 человек в каждой. Сколько мальчиков приехало в лагерь, если девочек было 11 человек?»

Дано решение: 2 * 9 = 18 (ч) 18 – 11 =7 (д)

Соответствуют ли друг другу текст и решение? (да)

2 тип задания – типовое

Если в задаче заданы цель и ситуация, а от учащихся требуются ранее усвоенные действия по ее решению, это репродуктивное алгоритмическое действие. Учащиеся выполняют его, самостоятельно воспроизводя и применяя информацию о ранее усвоенной ориентировочной основе выполнения данного действия, то есть решают типовую задачу. Будем считать типовой задачей, если в ней:

одни и те же связи между величинами;

одинаковая модель решения.

Ученик должен решить типовую задачу.

Например, дана задача: «На экскурсию в музей пришли ребята. Их разделили на 4 группы по 5 человек в каждой. Сколько учеников пришло из школы, если из детского сада пришло 12 ребят?»

3 тип задания - реконструкция

Если в задаче задана цель, но не ясна ситуация, в которой цель может быть достигнута, от учащегося требуется дополнить (уточнить) ситуацию и применить ранее усвоенные действия для решения данной задачи, это продуктивная деятельность, выполняемая не по готовому алгоритму или правилу, а по созданному или преобразованному в ходе самого действия.

Например, дана задача: «В магазин привезли ∆ ящиков огурцов по ◊ кг в каждом. Сколько огурцов продали, если осталось ░ кг?»

Для решения данной задачи ученику нужно самостоятельно обобщить решение данных ранее задач. Заменить символы числами и решить задачу, но решение записать на языке тех данных, которые даны в задаче.

4 тип задания - дополнение

Если в задаче известно лишь в общей форме цель деятельности, а поиску подвергаются и подходящая ситуация, и действия, ведущие к достижению цели, это продукт действия творческого типа, в результате которого создается объективно новая ориентировочная основа деятельности. Человек действует "без правил", но в известной ему области, создавая правила действия.

Например, дана задача: "Билеты на самолет до Архангельска купили 45 человек. Первым рейсом улетело 15 человек, вторым столько же, ."

Задание: необходимо поставить вопрос к данной задаче и решить ее.

На этой базе мы вывели следующие 3 уровня умения решать задачи: высокий, средний и низкий, в зависимости от количества баллов полученных в результате решения четырёх типов заданий.

Первое задание мы оцениваем в 1 балл, второе – 2 балла, за третье и четвертое ученик может получить по 3 балла.

Таким образом, ученик считается на высшем уровне, если получает 8 или 9 баллов, на среднем уровне, если получает 5, 6 или 7 баллов и на низком, если получает 1, 2, 3 или 4 балла.

Мы будем считать, что методика обучения решению задач эффективна, если в результате ее применения происходит повышение уровня умения решать задачи. Выработке умения решать составные задачи помогают так называемые упражнения творческого характера. К ним относятся решение задач повышенной трудности, решение задач несколькими способами, решение задач с недостающими и лишними данными, решение задач, имеющих несколько решений, а так же упражнения в составлении и преобразовании задач.

Понятие преобразования задачи.

Анализ литературы показывает, что последнее время уделяется внимание работе над решенной задачей. Предлагаются следующие виды работ:

Введение в условие задачи новых данных;

Изменение вопроса без изменения условия;

Изменение условия без изменения вопроса;

Изменение условия и вопроса;

Сравнение содержания и решения данной задачи с содержанием и решением другой задачи;

Исследование решения (Сколько способов решения имеет задача? При каких условиях она не имела бы решения? Возможны ли другие методы решения?).

Обоснование правильности решения (проверка решения задачи составлением обратной задачи).

Некоторые из перечисленных видов работ предусматривают умение детей составлять задачи, другими словами формулировать некоторый новый текст.

Составлять задачи можно двух видов: связанные с решенной и не связанные с решенной.

К задачам, не связанным с решенной, относятся задачи, составленные по выражению или по краткой записи.

К задачам, связанным с решенной задачей, относятся задачи обратные данной, аналогичные задачи, преобразованные задачи.

Мы будем подробнее рассматривать задачи, связанные с решенной, т.к. преобразование задач – есть частный случай обучения составлению задач.

Контрольные работы, проведенные перед началом эксперимента, показали, что большинство учеников не могут самостоятельно составлять задачи, связанные с решенной, а именно, преобразовывать задачи.

Рассмотрим сначала, как трактуется понятие «преобразование» в различной литературе.

В Толковом Словаре русского языка Ожегова С.И., Шведовой Н.Ю. «преобразование» - крупное изменение, перемена (книжн.).

В Экономико-математическом словаре Лопатников Л.И. рассматривает «преобразование» [transformation] как изменение значений переменных, характеризующих систему, например, превращение переменных на “входе” предприятия (живой труд, сырье и т. д.) в переменные на “выходе” (продукты, побочные результаты, брак). Это пример в ходе вещественного процесса. Решение задачи, разработка модели, передача сведений о выполнении плана - все это примеры преобразования информации. На практике оно производится различными способами обработки данных.

В Толковом словаре Ушакова понятие «преобразовывать» предлагается 3 значения:

1. В корне изменить, переделать на другой лад.

2. Придать чему-нибудь другой вид, образ, преобразить кого-нибудь либо что-нибудь.

3. Превратить из одного вида, качества в другой вид, в другое качество.

Большой Энциклопедический словарь рассматривает преобразование как замену одного математического объекта (геометрической фигуры, алгебраической формулы, функции и др.) аналогичным объектом, получаемым из первого по определенным правилам.

В методической математической литературе этот вопрос практически не освещен. Методисты много говорят об этапе работы над задачей после её решения, но конкретно не останавливаются на методике его проведения. Понятие «преобразование задач» встречается в работах Бантовой М.А., Истоминой Н.Б. и др., но разъяснение данного понятия они не предлагают. Поэтому мы решили дать свое определение.

Вернемся к структуре задачи: задача состоит из условия и требования. Условие и требование включает некие числовые данные, известные и искомые, связанные между собой. Если мы изменим эти связи, то получим новую по сравнению с исходной задачу, т.е. преобразованную задачу.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы