Основы методологии физики в курсе средней школы

Подчеркивая познавательную ценность гипотезы, С.И. Вавилов все методы построения физической теории разбил на три класса: метод принципов, метод модельной гипотезы и метод математической гипотезы.

Первый путь построения физического знания был разработан впервые Ньютоном при создании классической механики. Он заключается к следующем. На основе опыта формулируются аксиомы или так называемые пр

инципы, и из них дедуктивным путем выводятся отдельные законы и положения, которые должны быть проверены на опыте. Согласие этих следствий с опытом служит гарантией справедливости основных положений теории. Методом принципов построены, помимо классической механики, также термодинамика, электродинамика, теория относительности, атомная теория Бора.

Преимущество метода модельной гипотезы заключается в его наглядности и простоте, он неоднократно использовался в истории физики. Этим методом построены, например, молекулярно-кинетическая теория, статистическая физика, классическая электронная теория.

Метод математической гипотезы наиболее абстрактен. С его помощью создана квантовая механика. Фундаментальная идея Луи де Бройля о корпускулярно-волновом дуализме возникла на основе экстраполяции математического соотношения между длиной волны и импульсом для фотона на микрочастицы, Л. де Бройль воспользовался аналогией между математическим аппаратом аналитической механики и волновой теорией. Гипотеза о существовании позитрона также вытекала из решения уравнения в созданной П. Дираком квантовой теории электрона. В средней школе метод математической гипотезы можно проиллюстрировать, используя аналогию между гравитационным и электростатическим полем.

Учащиеся должны понимать разницу между научной гипотезой, выдвигаемой для разрешения той или иной проблемной ситуации, возникшей в процессе познания, и гипотезой, основанной на домыслах, слепой вере в «божественные силы» или фантастических предположениях, ничего общего не имеющих с реальностью. Поэтому надо обратить их внимание на ряд условий, обеспечивающих состоятельность научной гипотезы. Прежде всего, гипотеза должна пройти через логический анализ, ее необходимо сопоставить с теми известными фактами, справедливость которых неоднократно и надежно обоснована. Вместе с тем гипотеза не должна слепо приспосабливаться к фактам, которые кажутся само собой разумеющимися, соответствующими нашему «здравому смыслу». В истории науки было много случаев, когда такие факты пересматривались и опровергались новой теорией, возникшей на основе «безумной» гипотезы. Как отмечал К.А. Тимирязев, «иногда говорят, что гипотеза должна быть в согласии со всеми известными фактами; правильнее было бы сказать – или быть в состоянии обнаружить несостоятельность того, что неверно признается за факты и находится в противоречии с нею».

Последнее обстоятельство можно проиллюстрировать рядом примеров: гипотеза Коперника о движении Земли вокруг Солнца, составившая основу гелиоцентрической системы; гипотеза Галилея об одинаковости падения тел в безвоздушном пространстве, получившая простую интерпретацию в механике Ньютона; гипотезы Бора о характере поведения электронов в атоме, включенные в виде постулатов в атомную теорию, и т.д.

Научная гипотеза как предположительное знание требует своего экспериментального подтверждения, а поэтому должна быть принципиально проверяема. Пусть гипотеза не проверена сегодня (она, например, неактуальна для данного состояния науки, или технический уровень не позволяет это сделать), тогда она будет проверена в будущем, но до этого времени ученые относятся к ней с недоверием и не делают, как правило, эту гипотезу предметом исследования. В истории физики бывали случаи, когда гипотеза ждала своего подтверждения целые столетия (например, атомистическая гипотеза, впервые введенная в физику древнегреческими материалистами Демокритом и Эпикуром, была надежно доказана экспериментами лишь в начале XX в.; гипотеза Гюйгенса о волновых свойствах света, выдвинутая в XVII в., получила экспериментальное подтверждение в XIX в. и т.д.). Гипотеза, не подтвержденная экспериментально, не включается в научное знание. Усвоению этого положения учащимися должны помочь соответствующие примеры.

На примерах ряда гипотез, таких, как гипотезы теплорода, электрической и магнитной жидкостей, светоносного эфира, школьники должны усвоить, что гипотезы, принципиально не проверяемые, не имеют права на существование в науке, однако они часто стимулируют поиск ученых, наталкивая их на новые эксперименты и, подобно строительным лесам, помогают строить здание физической науки. Учащихся следует познакомить еще с одним свойством научной гипотезы – ее плодотворностью. Выдвинутая вначале для объяснения одного-единственного явления, гипотеза надежно служит в дальнейшем при исследовании целого ряда процессов. Таковы фундаментальные гипотезы об атомах, о квантах. Квантовая гипотеза, например, выдвинутая М. Планком в 1900 г. только для объяснения излучения абсолютно черного тела (сам ученый вначале был категорически против ее экстраполяции на другие явления), была вскоре развита и обобщена А. Эйнштейном в гипотезу о фотонах (1905 г.), и на этой основе получили объяснение фотоэффект и люминесценция; была построена теория удельных теплоемкостей многоатомных газов и твердых тел (1911 г.). Эта же гипотеза была использована Н. Бором для создания теории атома водорода (1913 г.) и т.д.

В настоящее время квантовая гипотеза, блестяще подтвержденная экспериментально, стала прочным фундаментом всей современной физики.

Необходимо также показать учащимся, как происходит уточнение и углубление гипотезы, выдвинутой вначале в форме догадки, превращение ее в теорию посредством эксперимента и логического аппарата. При этом нельзя забывать, что в учебном процессе гипотеза получает свое обоснование и доказательство сразу же после ее выдвижения, поэтому всегда следует отмечать долгий путь развития научной гипотезы от гениальной догадки ученого до сложившейся теории.

Между теорией и гипотезой, положенной в основу данной теории, нет качественного различия. Гипотеза служит отправной точкой, первой ступенью в построении физической теории. Экспериментальное подтверждение следствий теории является одновременно подтверждением тех основных посылок теории, которые были выдвинуты вначале как гипотезы. Это можно проиллюстрировать при изучении теории всемирного тяготения, теории электромагнитного поля, элементов теории относительности.

В учебном процессе логический процесс формирования гипотезы состоит в ее выводе из ранее изученных законов, теорий, идей. При этом происходит дедуктивная экстраполяция этих знаний на объяснение новых фактов и результатов экспериментальной деятельности учащихся.

При этом нельзя забывать, что в учебном процессе гипотеза получает свое обоснование и доказательство сразу же после ее выдвижения, поэтому всегда следует отмечать долгий путь развития научной гипотезы от гениальной догадки ученого до сложившейся теории.

Страница:  1  2  3  4  5  6  7  8  9  10  11 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы