иёмы активизации учащихся в процессе обучения математике в начальных классах при изучении нумерации многозначных чисел

Первая попытка реализовать идеи развивающего обучения была предпринята Л. В. Занковым и его соратниками в 50 - 60 - х годах. Другая группа учёных в 60 - 80 - х годах под руководством Д. Б. Эльконина и В. В. Давыдова разработала другой вариант развивающего обучения, использующий несколько другой подход. Начиная с 80 х годов обе системы были развёрнуты в полную силу. На сегодняшний день они призн

аны государственными. Вместе с традиционным обучением они составляют три равноправные системы обучения, используемые в школе.

Развивающее обучение - ориентация на потенциальные возможности человека. Теорией развивающее обучение берёт своё начало в работах Песталоцци, Дистервега, Ушинского.

Принципы развивающего обучения.

1. Обучение на высоком уровне трудности.

2. Принцип ведущей роли теоретических знаний.

3. Обучение быстрым темпом.

4. Осознание ребёнком процесса обучения.

Суть развивающего обучения - постановка проблемной ситуации перед детьми. Учащиеся должны разрешить ситуацию либо сами, либо с помощью учителя. В результате такой деятельности у учащихся развиваются мыслительные операции, способствующие активности познавательной деятельности, вычислительные навыки.

Основная задача учителя в процессе развивающего обучения - организация учебной деятельности ученика. Основой учения в структуре развивающего обучения является связь “цель - средства - контроль”, а центральным звеном - самостоятельная учебно - познавательная деятельность ученика. Важнейшее условие данного обучения - педагогическое предвиденье и предвиденье ученика. Педагогическое предвиденье учителя - выдвигать, уточнять, проектировать задачи, предвидеть результаты свои и детей, предвидеть и создать ситуацию. Предвиденье ученика связано со знанием им инварианта, который лежит в основе разных видов деятельности.

2.1. Развивающие методы обучения, их роль в организации познавательной деятельности учащихся

Особую роль в организации продуктивной деятельности младших школьников в процессе обучения математике играют развивающие методы обучения. К таким методам можно отнести: приём сравнения, приём классификации, приём анализа и синтеза, приём обобщения.

Приём сравнения основан на следующих этапах:

- выделение признаков или свойства одного объекта;

- установление сходства и различия между признаками двух объектов;

- выявление сходства между признаками трёх, четырёх и более объектов.

В качестве объектов по формированию у детей логического приёма сравнения можно использовать предметы или рисунки с изображением предметов, хорошо им знакомых, в которых они могут выделить те или иные признаки, опираясь на имеющиеся у них представления. Для организации деятельности учащихся можно также использовать приём аналогии.

Понятие “аналогичный” в переводе с греческого языка означает “сходный”, “соответственный”, понятие “аналогия” - сходство в каком-либо отношении между предметами, явлениями, понятиями, способами действий. В процессе использования на уроках приёма аналогии учащиеся производят умозаключения по аналогии.

Умозаключение по аналогии помогает учащимся усвоить переход к письменному сложению и вычитанию многозначных чисел, сравнивая его со сложением трёхзначных.

Для правильного умозаключения по аналогии необходимо выделить существенные признаки объектов, в противном случае вывод может оказаться неверным.

Важнейшими операциями, помогающими облегчить учащимся изучение нумерации многозначных чисел, являются синтез и анализ.

Анализ связан с выделением элементов данного объекта, его признаков, свойств. Синтез - это соединение различных элементов, сторон объекта в единое целое.

В мыслительной деятельности человека анализ и синтез дополняют друг друга, так как анализ осуществляется через синтез, а синтез - через анализ. Выполняя задания на сравнение и классификацию, учащиеся постоянно пользуются этими приёмами.

Большое значение в усвоении структуры многозначного числа имеют упражнения на сравнительный анализ чисел, записанных одинаковыми цифрами. Например: в чём сходство и различие следующих чисел?

а) 362521 и 521362, б) 181014, 181140, 181104.

Отвечая на этот вопрос, ученики используют такое понятие, как “класс” и “разряд”. Например, объясняя различие чисел 362521 и 521362, они отмечают: “В первом случае класс единиц записан цифрами 5,2, и 1, во втором, этими же цифрами записан класс тысяч. Это означает, в первом числе 5 сотен 2 десятка 1 единица”.

При сравнении чисел 181014, 181140, 181104, необходимо отметить, что класс единиц и класс тысяч во всех трёх числах содержит одинаковые цифры. Все три числа содержат сто восемьдесят одну тысячу. Так как цифры класса единиц меняют своё место в каждом числе, то соответственно меняются названия записанных чисел.

Ещё одним примером упражнения на сравнительный анализ служит следующее задание:

Сравни числа: 8005 и 80005; 9004 и 9040; 64130 и 46130 и т. д.

Также усвоению нумерации многозначных чисел способствуют упражнения на перевод единиц одних величин в другие, так как основанием этого перевода (за исключением мер времени) является число 10. Например: 84241 = . кг .г (1 кг = 1000 г, поэтому определение количества килограммов связано с ответом на вопрос: “Сколько тысяч в числе?” Закрывая цифры, стоящие в разряде единиц, десятков, сотен, имеем: в числе 84 тысячи или 84241 = 84 кг 241 г).

Умение называть количество единиц, десятков, сотен, тысяч в числе требует как усвоения разрядного состава числа, так и осознания того, что каждая разрядная единица в числе (за исключением первого разряда единиц) содержит десять единиц низшего разряда, т.е. 1 дес. = 10 ед., 1 сотня = 10 дес. = = 100 ед.; 1 тысяча = 10 сот. = 100 дес. = 1000 ед.

2.1.2 Развивающее обучение по системе Л. В. Занкова

Дидактическая система, направленная на общее развитие школьников, разработанная под руководством академика Л. В. Занкова, является альтернативной той системе обучения, которая действовала и действует сейчас на практике. Она прошла большой путь от её разработки до проверки в массовом эксперименте в 60 - 80 - х г. г. Л. В. Занков опередил своё время. На рубеже 80 - 90 - х годов система получила как бы второе дыхание - к ней потянулись руководители и учителя массовой школы.

Чем объяснить её жизненность? Прежде всего, тем, что в ней реализуются те “прорывные” идеи, которые поставлены перед школой самой жизнью, - считать основополагающей идеологией школы педагогику развития, пересмотреть проблему воспитания личности в процессе обучения.

В ней решаются такие задачи, которые сейчас волнуют учителей: как можно учить детей без двоек и без принуждения, как развить у них устойчивый интерес к знаниям и потребность в их самостоятельном поиске, как сделать учение радостным.

Как показала жизнь, эти задачи нельзя решить с помощью отдельных методических находок. Нужна перестройка учебного процесса.

При разработке теории и практики обучения, направленного на общее развитие детей, Л. В. Занков и его лаборатория опирались не на отдельные факты и даже не на сумму фактов, а на целую систему фактов, полученных на основе исследований. Это и определяет практическую надёжность системы.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Педагогика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы