Изучение темы "Преобразование графиков" на уроке информатики
Преобразование графиков
Цели
¨ Дать понятие преобразование графиков функций, рассмотреть четыре вида преобразований: параллельный перенос, растяжение и сжатие по оси Оу, растяжение и сжатие по оси Ох, графики функций, содержащих знак модуля.
¨ Повторить определение модуля, как он раскрывается.
¨ Закрепить знания и навыки работы в приложении Microsoft Excel: задават
ь функцию, построение графиков.
План урока
Организационный момент
Объяснение нового материала
Самостоятельная работа учащихся в приложении Microsoft Excel
Закрепление пройденного материала
Получение домашнего задания
Подведение итогов
Ход урока
Организационный момент
– Здравствуйте. Садитесь. (Ребята садятся за парты).
– Ребята запишите в тетрадях сегодняшнее число, классная работа и тему урока «Преобразование графиков».
2. Объяснение нового материала (слайд №4)
Существует четыре вида преобразования графиков функции:
· параллельный перенос;
· растяжение и сжатие по оси Оу;
· растяжение и сжатие по оси Ох;
· графики функций, содержащих знак модуля.
Что бы наглядно увидеть, как преобразовывается график функции в зависимости от изменения ее задания мы рассмотрим в приложении Microsoft Excel. (Ребята пересаживаются за компьютеры).
3. Самостоятельная работа учащихся в приложении Microsoft Excel
Введите в ячейки: А1 – «х»; В1 – «f(x)»; C1 – «f(x)+6»; D1 – «f(x) – 10», в ячейках А2 – А12 задать диапазон значений переменной х [-5; 5] с шагом 1, в ячейку В2 ввести функцию .
Каждый ученик должен получить следующее
После чего, задается функция в столбцах С и D следующим образом
Далее под руководством учителя ребята строят графики функций в одной координатной плоскости
1 шаг – выбирают диапазон данных и вид графика
2 шаг – выбирают подписи по оси Х
3 шаг – после внимательного рассмотрения полученного результата, ребята выдвигают свои предположения какой вид из преобразований графиков задается как f(x)+k – параллельный перенос по оси ОУ:
– при k>0 перенос вверх на k;
– при k<0 перенос вниз на k.
Далее учитель предлагает изменить задания функций в ячейках С1 – «f (x+2)»; D1 – «f (x-3)». Соответственно меняются формулы в ячейках С2-С12 и D1-D12 следующим образом.
Далее ученики сроят графики функций в одной координатной плоскости
После чего ученики делают вывод, что если функция задается f (x+k) то это параллельный перенос по оси ОХ:
– при k>0 перенос влево на k;
– при k<0 перенос вправо на k.
2. Объяснение нового материала
А теперь учитель предлагает посмотреть несколько слайдов и самостоятельно сделать выводы, какие преобразования над графиками они пронаблюдали. Учитель на интерактивной доске показывает презентацию, содержащую следующие рисунки:
Рис. 1
Рис. 2
Рис. 3
Рис. 4.
После просмотра презентации ученики совместно с учителем обсуждают и делают следующие выводы:
¨ по первому и второму рисункам, выясняем какие преобразования происходят с графиком функции y=f(x), при изменении аргумента функции y=f(kx)
à при , график функции y=f(kx) получается из графика функции y=f(x) растяжением вдоль оси Ох;
à при , график функции y=f(kx) получается из графика функции y=f(x) сжатием вдоль оси Ох;
à при , график функции y=f(kx) получается из графика функции y=f(x) симметричным отображение относительно оси Оу.
¨ по третьему и четвертому рисункам, выясняем какие преобразования происходят с графиком функции y=f(x), при изменении значение функции y=kf(x)
à при , график функции y=kf(x) получается из графика функции y=f(x) сжатием вдоль оси Оу;
à при , график функции y=kf(x) получается из графика функции y=f(x) растяжением вдоль оси Оу;
à при , график функции y=kf(x) получается из графика функции y=f(x) симметричным отображение относительно оси Ох.
Записав, результаты в тетради ученики получают задание, которое выполняют на местах, а учитель контролирует и вызывает к доске у кого хорошо получается в тетради, для того что бы ученики сравнили свой результат с правильным.
4. Закрепление пройденного материала
Построить график функции а) ; б) ; в) , если график функции f(x) изображен на рисунке (слайд №11)
Рис. 5.
2. Объяснение нового материала
Ребята мы с вами рассмотрели только три вида преобразований графиков, сейчас просмотрим презентацию, в которой показано как преобразовывается график функции если:
1) значение функции взято по модулю (слайд №12);
2) аргумент функции взят по модулю (слайд №13);
3) значение функции и аргумент функции взяты по модулю (слайд №14).
Рис. 6
На рисунке 6, мы видим, что график функции совпадает с графиком функции на тех промежутках, на которых , а на тех промежутках, где , график функции получается из графика функции с помощью симметрии относительно оси Ох.
Рис. 7
На рисунке 7, мы видим, что график функции совпадает с графиком функции на тех промежутках, на которых , а на тех промежутках, где , график функции получается из графика функции с помощью симметрии относительно оси Оу.
Другие рефераты на тему «Педагогика»:
- Историческое краеведение как элемент современного исторического образования
- Унификация и агрегатирование в практике дизайнерского проектирования. Принцип игрового начала детской среды
- Современные педагогические технологии
- Особенности организации самостоятельной работы студентов педагогического колледжа при овладении курсом методики физического воспитания и развития детей
- Методы математической статистики, использующиеся в педагогических экспериментах
Поиск рефератов
Последние рефераты раздела
- Тенденции развития системы высшего образования в Украине и за рубежом: основные направления
- Влияние здоровьесберегающего подхода в организации воспитательной работы на формирование валеологической грамотности младших школьников
- Характеристика компетенций бакалавров – психологов образования
- Коррекционная программа по снижению тревожности у детей младшего школьного возраста методом глинотерапии
- Формирование лексики у дошкольников с общим недоразвитием речи
- Роль наглядности в преподавании изобразительного искусства
- Активные методы теоретического обучения