Теория о бесконечности простых чисел-близнецов
Пара №1. Пара №2. Пара №3. Пара №4.
У + 2 = Х или У Х + 2 = У или Х У + 2 = Х или У Х + 2 = У или Х
Х – 2 = У или Х У – 2 = Х или У У – 2 = У или Х У – 2 = Х или У
Указывая что равно Х или У, мы имеем ввиду то что зная одно число мы точно не можем знать статус рядом стоящего.
Теперь опишем с отсутствием пары простых-близнецов. Здесь всего три варианта, так что повторяющийся мы
опустим в описании(кстати это может быть любой из трёх):
Х |
Х |
Х |
Х |
Х |
Пара №1. Пара №2. Пара №3.
У + 2 = Х Х + 2 = У или Х Х + 2 = У или Х
Х – 2 = У или Х У – 2 = Х Х – 2 = У или Х.
Теперь выведем общие формулы, отдельно для 4 вариантов и для 3 ( с отсутствием пары простых-близнецов). Эти формулы необходимо читать со средины (выделена жирным шрифтом), вправо и влево:
4 варианта (№1) 3 варианта (№2)
Х или У = 2 – Х + 2 = У или Х Х или У = 2 – Х + 2 = У или Х
У или Х = 2 – У + 2 = Х или У Х = 2 – У + 2 = Х
Как видим что в варианте №1 нет противоречий. И так он работает до пары 100 000 000 061 – 100 000 000 063, и так далее до более дальней известной нам пары.
В варианте №2 уже явно бросаются в глаза противоречия. Если У – 2, всегда равно Х и У + 2, всегда равно Х, то при Х + 2 и Х – 2, не всегда равно У и возможно Х.
У – 2 = Х, но Х + 2 = У или Х
У + 2 = Х, но Х – 2 = У или Х
Как видим, система построения простых-сложных, при исчезновении пары простых-близнецов, ломается и превращается в несистему. И здесь число, и его статус, внутреннее наполнение, зависят не от него самого, а от рядом стоящего числа. И при этом, что самое главное, без какой бы то либо взаимосвязи. И если Система ломается с её 4 вариантами, то все наши прогнозы о времени после поломки Системы равняются нулю. И доказательство о том, что простые числа бесконечны также должно исчезнуть. Да и вообще то, что все числа бесконечны!
При Х + 6 и Х – 6 в Системе №3, при Х + 10 и Х – 10 в Системе №5, и т.д., также есть зависимость, но здесь и Х делится на одно число и добавляемая цифра также на его делится. У нас же при варианте №2, такого нет. Получаемое число не может делиться на 2, так как оно нечётное, а то число к которому добавляем оно простое, и оно не содержит в себе функцию F2 (см. вначале теории).
О возможности таких вариантов:
Х |
Х |
Х |
Х |
Х |
Х |
Х |
Х |
Х |
Х |
пожалуй, не стоит и говорить. Доказательства исходят из всего вышесказанного!
Допустим, что вышесказанное – это мираж ума, который создан для самообмана в поисках найти желаемое. Допустим! Хотя это вышесказанное по праву относится к философским догмам(!) математики. Но нам необходимо все догмы подтверждать эмпирически (доказательствами), иначе мы превратимся в инквизиторов запрещающих Копернику верить фактам!
Теперь попробуем пойти далее в своих рассуждениях. Попробуем найти то, что миражом ума никак нельзя назвать. Вначале просмотрим на таблицу, показывающею рост
простых и вообще чисел, а также на процентное соотношение простых к сложным, и на падение такого роста( см. приложение №1).
Мы за основу подсчёта брали десятикратное увеличение общих чисел. Как же происходит рост простых? Он происходит, правда с отставанием от общего роста числового поля, что легко наводит на мысль об исчезновении их вообще где то там в бесконечности.
Просмотрим начальный этап. Вот мы все числа обработали Системой№3 и Системой№5. И вот что у нас получилось:
0 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
27 |
29 |
31 |
33 |
35 |
37 |
39 |
41 |
43 |
45 |
47 |
49 |
51 |
53 |
55 |
57 |
59 |
61 |
63 |
65 |
67 |
69 |
Штрихкод Матрицы3-5. Теперь берём Систему №7:
0 |
3 |
5 |
7 |
9 |
11 |
13 |
15 |
17 |
19 |
21 |
23 |
25 |
27 |
29 |
31 |
33 |
35 |
37 |
39 |
41 |
43 |
45 |
47 |
49 |
51 |
53 |
55 |
57 |
59 |
61 |
63 |
65 |
67 |
69 |
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах