Теория о бесконечности простых чисел-близнецов

Пара №1. Пара №2. Пара №3. Пара №4.

У + 2 = Х или У Х + 2 = У или Х У + 2 = Х или У Х + 2 = У или Х

Х – 2 = У или Х У – 2 = Х или У У – 2 = У или Х У – 2 = Х или У

Указывая что равно Х или У, мы имеем ввиду то что зная одно число мы точно не можем знать статус рядом стоящего.

Теперь опишем с отсутствием пары простых-близнецов. Здесь всего три варианта, так что повторяющийся мы

опустим в описании(кстати это может быть любой из трёх):

Х

   

Х

   

Х

   

Х

   

Х

Пара №1. Пара №2. Пара №3.

У + 2 = Х Х + 2 = У или Х Х + 2 = У или Х

Х – 2 = У или Х У – 2 = Х Х – 2 = У или Х.

Теперь выведем общие формулы, отдельно для 4 вариантов и для 3 ( с отсутствием пары простых-близнецов). Эти формулы необходимо читать со средины (выделена жирным шрифтом), вправо и влево:

4 варианта (№1) 3 варианта (№2)

Х или У = 2 – Х + 2 = У или Х Х или У = 2 – Х + 2 = У или Х

У или Х = 2 – У + 2 = Х или У Х = 2 – У + 2 = Х

Как видим что в варианте №1 нет противоречий. И так он работает до пары 100 000 000 061 – 100 000 000 063, и так далее до более дальней известной нам пары.

В варианте №2 уже явно бросаются в глаза противоречия. Если У – 2, всегда равно Х и У + 2, всегда равно Х, то при Х + 2 и Х – 2, не всегда равно У и возможно Х.

У – 2 = Х, но Х + 2 = У или Х

У + 2 = Х, но Х – 2 = У или Х

Как видим, система построения простых-сложных, при исчезновении пары простых-близнецов, ломается и превращается в несистему. И здесь число, и его статус, внутреннее наполнение, зависят не от него самого, а от рядом стоящего числа. И при этом, что самое главное, без какой бы то либо взаимосвязи. И если Система ломается с её 4 вариантами, то все наши прогнозы о времени после поломки Системы равняются нулю. И доказательство о том, что простые числа бесконечны также должно исчезнуть. Да и вообще то, что все числа бесконечны!

При Х + 6 и Х – 6 в Системе №3, при Х + 10 и Х – 10 в Системе №5, и т.д., также есть зависимость, но здесь и Х делится на одно число и добавляемая цифра также на его делится. У нас же при варианте №2, такого нет. Получаемое число не может делиться на 2, так как оно нечётное, а то число к которому добавляем оно простое, и оно не содержит в себе функцию F2 (см. вначале теории).

О возможности таких вариантов:

Х

   

Х

   

Х

   

Х

   

Х

Х

   

Х

   

Х

   

Х

   

Х

пожалуй, не стоит и говорить. Доказательства исходят из всего вышесказанного!

Допустим, что вышесказанное – это мираж ума, который создан для самообмана в поисках найти желаемое. Допустим! Хотя это вышесказанное по праву относится к философским догмам(!) математики. Но нам необходимо все догмы подтверждать эмпирически (доказательствами), иначе мы превратимся в инквизиторов запрещающих Копернику верить фактам!

Теперь попробуем пойти далее в своих рассуждениях. Попробуем найти то, что миражом ума никак нельзя назвать. Вначале просмотрим на таблицу, показывающею рост

простых и вообще чисел, а также на процентное соотношение простых к сложным, и на падение такого роста( см. приложение №1).

Мы за основу подсчёта брали десятикратное увеличение общих чисел. Как же происходит рост простых? Он происходит, правда с отставанием от общего роста числового поля, что легко наводит на мысль об исчезновении их вообще где то там в бесконечности.

Просмотрим начальный этап. Вот мы все числа обработали Системой№3 и Системой№5. И вот что у нас получилось:

0

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

Штрихкод Матрицы3-5. Теперь берём Систему №7:

0

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41

43

45

47

49

51

53

55

57

59

61

63

65

67

69

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы