Теория о бесконечности простых чисел-близнецов

Матрица 3-5-7-11

R=(3×5×7×11)×2=2310

Так на каждой Матрице, имеется бесконечное число шагов, как бы небыли великие шаги. Как никак а мы имеем дело с бесконечностью.

Теперь представим условную Матрицуn(Мn), с длиной внутреннего шага в N(в шаге под N, необходимо понимать Rn × 2):

Мn - Rn × 2

Теперь, на эту Матрицу накладываем новую(внешнею)

Систему(С) – Nпоследний член Матрицы+2. Соответственно и изменится вид Матрицы и длина шага:

Мn (n+2) - Rn × (n+2) × 2

Теперь допустим невозможное, что на определённом этапе, и на определённой Матрице(Мn), в каждом шаге осталось по одной паре простых близнецов:

Rn × 2 -- 1 пара

и она, пара, расположена на расстоянии:

(С) – Nпоследний член Матрицы+2

Внешняя Система- Nпоследний член Матрицы+2, наложивший на Матрицу(Мn), с первого «удара» уберёт эту пару. Но это произойдёт на первом Rn × 2. Для того чтобы это проделать и далее, Система- Nпоследний член Матрицы+2 должна прийти к началу второго Rn × 2. Так ли это?

Теперь вернёмся к:

Матрица 3-5-7-11

R=(3×5×7×11)×2=2310

По этому примеру мы видим, что все члены Матрицы, это простые числа 3-5-7-11. Они идут по порядку. Здесь мы видим отсутствие числа 9, так как оно составное. Так вот, при работе Матриц, и конкретно после Матрицы 3-5-7-11, вход вступает Система 13. Потом уже Матрица будет иметь следующий вид- Матрица 3-5-7-11-13.

Рассматривая пример с оставшейся одной парой, представим что она (пара) осталась на шаге Матрицы 3-5-7-11, и находится на расстоянии 13, то есть первого «удара» Системы 13. Далее, чтобы Система 13 убрала и другие пары на следующих R, то Система 13, должна выйти к началу шага R2 и т.д . А это в свою очередь означает, что должно быть так:

(3×5×7×11)×2=2310 : 13 = целое число.

Но:

2310 : 13=177,6923 .

Оставим в стороне умножение на 2, уже по этой операции видно что удваивание нечётного числа приводит к чётному, и при делении чётного (2310) на нечётное, не всегда приводит к целому числу в результате. Нас же это не всегда не устраивает. Как мы уже говорили, Матрица состоит из нечётных простых чисел, то и результат умножение ряда простых с последующим делением на следующее простое, не может дать целое число, так как это следующее, есть простое, и значит, оно не соприкасается с позади стоящими. Тоесть оно не делимо на них с целым показателем в итоге. А иначе бы это простое небыло бы простым.

Так вот, после первого «удара» уже на втором, третьем Система 13 сбивается, и оставляет пары невредимыми. Сколько, об этом позже.

Одна пара на шаге маловероятна, если вообще не вероятна. Долгое время считалось, что чем больше простые числа, тем больше расстояние между ними. В окрестностях целого числа х, расстояние между смежными простыми числами пропорционально логарифму х. Это среднее значение расстояний.Но новые открытия доказали, что в отдельных случаях расстояние может быть значительно меньше.

«Вероятность того, что число Х является простым, приблизительно равна 1/ln x. Это означает, что количество простых чисел в интервале длины А поблизости от Х должно быть примерно равно a/ln x.

Соответственно вероятность того, что два числа вблизи Х оба окажутся простыми, приблизительно равна 1/lnІ x. Ожидаемое же количество простых чисел-близнецов в интервале от x до x + a приблизительно равно a/lnІ x. На самом деле в реальности, ожидаемая величина немного больше, так как если уже известно, что число n простое, то это изменяет шансы, что и n + 2 будет простым. В связи с этим, ожидаемое количество простых чисел-близнецов в интервале [x, x+a] равно Ca/lnІ x. C – постоянная, приблизительно равная 1,3 (C = 1,3203236316 .).

Более вероятно, но опять чисто теоретически и чисто иллюзорно, можно представить, что в один момент, на какой, то Матрице, все пары выстроятся в чёткий ряд, с шагом, который проделывает новая Система. Но опять же, на втором внутреннем шаге прежней Матрицы, Система даст сбой, и в итоге будут те, же показатели.

Так работая, Система 13, на Матрице 3-5-7-11 с длиной внутреннего матричного шага в 2310, выстраивает новый внутренний шаг, с новой внутренней системой на новой Матрице 3-5-7-11-13. Теперь этот шаг увеличивается с 2310 до 30 030, то есть в 13 раз. А это значит, что внутренний шаг на Матрице стал длиннее, но количество таких внутренних шагов на Матрице, осталось прежним—БЕСКОНЕЧНЫМ!

Теперь посмотрим на реальное положение дел:

Матрица

Кол-во не пар, на шаге

Кол-во пар на шаге

% пар

Матрица 3-5

2

3

60

Матрица 3-5-7

20

15

42

Матрица 3-5-7-11

246

136

35

Как видим, как бы процентное количество пар не уменьшалось на каждом новом шаге, но количество пар растёт. Система построения Матриц гарантирует жизнь простым и парам.

А есть ли у нас возможность подсчитать количество пар на каждом внутреннем шаге Матрицы?

Матрица 3

ОООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООООО

Матрица 3-5

ХООХО-30-ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО ХООХО

Матрица 3-5-7

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО-210-ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

ОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО

ХООХОХОХХОХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХО

ХОХХХХООХХХХОХОХХОХОХООХО ХООХОХОХХОХОХХХХООХХХХ

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы