Теория о бесконечности простых чисел-близнецов

Начинаем строить первичный принцип-систему построения простых чисел(Система 3):

21

 

27

 

23

gn=top >

25

 

Как видим (пока видим!), каждое третье число, есть сложное – так как оно делится на три. И по этому видим что возможны только пары близнецы, но не тройняшки, и т.д И цифры между 21 и 27, реальные кандидаты в простые числа и в пару. Если бы была только такая система, то все числа между верхними, были бы простыми и парами одновременно.

Далее, у нас выстраивается новая система (Система 5):

25

 

35

 

27

29

31

33

 

Как видим, она уже корректирует первичную Систему 3, и 25 переводит в разряд сложных. Первая же, в свою очередь корректирует вторую, и 27 во второй переводит в разряд сложных.

Идём ещё далее (Система 7):

35

 

49

 

37

39

41

43

45

47

 

Которая также осуществляет свою корректировку. Система 9, то есть нахождение чисел делящихся на 9, можно сказать, что копирует Систему 3, и поэтому Системы с номерами сложных, не участвуют в построении.

Система 11, также корректирует Систему 3, но уже только каждую четвёртую единицу Системы 3. Система 13 уже в свою очередь каждую пятую единицу Системы 3. Если мы говорим что каждую пятую, то это означает то что это максимум возможности.

Как видим, первичной системой в образовании простых и сложных среди нечётных является Система 3:

21

 

27

 

23

25

 

Какой же мизерный шанс у оставшихся двух потенциальных кандидатов в простые числа, стать простыми! И тем более остаться парой!

Теперь мы Систему 3, удлиним до 4 её членов ( Х – постоянные сложные, такие как 21,27):

Х

   

Х

   

Х

   

Х

   

Х

Теперь заполним пустующие клетки возможными вариантами:

- сложное число. – простое число.

Х

   

Х

   

Х

   

Х

   

Х

Как видим, есть только четыре варианта для заполнения пустот. Какое же заманчивое наваждение появляется здесь провести аналогию с 4 буквами ДНК! Так вот, если бы здесь работал принцип теории вероятности со случайным появлением вариантов, то у каждой пары был бы реальный шанс достойно отстаивать свои 25%. У нас же как мы знаем не так. Значит, что-то корректирует нашу теорию вероятности. Кажется, мы уже ответили на этот вопрос, говоря о Системе 5, Системе 7, .∞.

Теперь допустим, что из 4 вариантов, в один момент, в результате корректировки, выпадает 1 вариант, и это вариант есть пара простых-близнецов.

Сейчас уже имеется вот такой вид, а вернее только такие варианты:

Х

   

Х

   

Х

   

Х

   

Х

Возможно ли это?

Теперь вначале опишем работу с 4 вариантами (в первоначальном виде)при помощи простых уравнений (У – простое число, Х – сложное):

Х

   

Х

   

Х

   

Х

   

Х

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы