Некоторые линейные операторы
Таким образом, норма F(y) = будет ||F|| = ;
2) Найдем норму функционала, определенного на C[0, 2], где p(x)=(x-1)
F(y) = .
По выше доказанному ||F|| = c="images/referats/3114/image041.png">= 1.
§3. Обратный оператор. Спектр оператора и резольвента
Пусть , – нормированные пространства, – линейный оператор, DA- область определения оператора, а RA – область значений.
Определение 6. Оператор А называется обратимым, если для любого элемента у, принадлежащего RA, уравнение Ах=у имеет единственное решение.
Если оператор А обратим, то каждому элементу у, принадлежащему RA, можно поставить в соответствие единственный элемент х, принадлежащий DA и являющийся решением уравнения Ах=у. Оператор, осуществляющий это соответствие, называется обратным оператором к оператору А и обозначается А-1.
Теорема 4.
Для того чтобы линейный оператор имел ограниченный обратный оператор необходимо и достаточно, чтобы выполнялось неравенство:
, (m>0).
Доказательство:
Достаточность.
Пусть выполняется данное неравенство. Тогда равенство Ax=0 возможно лишь тогда, когда x – нулевой вектор. Получим 0 m*||x||, отсюда ||x|| 0, но так как норма не может быть <0, то x=0. А обращается в ноль лишь на нулевом векторе. Итак, А-1 существует.
Докажем его ограниченность.
y=Ax.
x=A-1y, норма ||A-1y||=||x||, но ||x|| ||Ax||=||y||.
Отсюда ||A-1y|| ||y||, то есть обратный оператор существует и он ограничен.
Если за m возьмем наибольшую из возможных, то получим, что ||A-1||=.
Необходимость.
Пусть от А имеется ограниченный обратный А-1 на нормированном пространстве.
Итак, ||A-1y|| М||y||.
Подставляем значение y и значение A-1y,получим ||x|| M||Ax|| (М всегда можно считать положительным числом).
Отсюда ||Ax|| ||x||.
Положим =m, получим ||Ax|| m||x||.
т. д-на.
В теории операторов важную роль играет понятие спектра оператора. Рассмотрим это понятие сначала для конечномерного пространства.
Определение 7. Пусть А – линейный оператор в n-мерном пространстве Еn. Число λ называется собственным значением оператора А, если уравнение Ах=λх имеет ненулевые решения. Совокупность всех собственных значений называется спектром оператора А, а все остальные значения λ – регулярными. Иначе говоря, λ есть регулярная точка, если оператор , где I – единичный оператор, обратим, При этом оператор (А – λI)-1, как и всякий оператор в конечномерном пространстве, ограничен. Итак, в конечномерном пространстве существуют две возможности:
1) уравнение Ах=λх имеет ненулевое решение, то есть λ является собственным значением для оператора А; оператор (А – λI)-1 при этом не существует;
2) существует ограниченный оператор (А – λI)-1, то есть λ есть регулярная точка.
В бесконечном пространстве имеется еще и третья возможность, а именно:
3) оператор (А – λI)-1 существует, то есть уравнение Ах=λх имеет лишь нулевое решение, но этот оператор не ограничен.
Введем следующую терминологию. Число λ мы назовем регулярным для оператора А, действующего в линейном нормированном пространстве Е, если оператор (А – λI)-1, называемый резольвентой оператора А, определен на всем пространстве Е и непрерывен. Совокупность всех остальных значений λ называется спектром оператора А. Спектру принадлежат все собственные значения оператора А, так как, если (А – λI)х=0 при некотором х≠0, то оператор (А – λI)-1 не существует. Их совокупность называется точечным спектром. Остальная часть спектра, то есть совокупность тех λ, для которых (А – λI)-1 существует, но не непрерывен, называется непрерывным спектром. Итак, каждое значение λ является для оператора А или регулярным, или собственным значением, или точкой непрерывного спектра. Возможность наличия у оператора непрерывного спектра – существенное отличие теории операторов в бесконечномерном пространстве от конечномерного случая.
Определение 8. Оператор , где – регулярная точка оператора А, называется резольвентой[6] оператора А и обозначается (или ).
Теорема 5. Пусть – линейный непрерывный оператор, его регулярные числа. Тогда .
Доказательство. Умножим обе части равенства на : (==. С другой стороны получим . Так как числа – регулярные для оператора А, то оператор имеет обратный. Значит, из равенства следует, что . Значит, утверждение теоремы верно.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах