Математический анализ. Практикум
Пример 31.
б) замена в интеграле вида:
;
Приме
р 32.
Пример 33.
4. Метод интегрирования по частям:
Пример 34.
Пример 35.
Возьмем отдельно интеграл
Вернемся к нашему интегралу:
3.2 Определенный интеграл
3.2.1 Понятие определенного интеграла и его свойства
Определение. Пусть на некотором интервале задана непрерывная функция . Построим ее график.
Фигура, ограниченная сверху кривой , слева и справа прямыми и снизу отрезком оси абсцисс между точками a и b, называется криволинейной трапецией.
S – область – криволинейная трапеция.
Разделим интервал точками и получим:
Интегральная сумма:
Определение. Определенным интегралом называется предел интегральной суммы.
Свойства определенного интеграла:
1. Постоянный множитель можно выносить за знак интеграла:
2. Интеграл от алгебраической суммы двух функций равен алгебраической сумме интегралов этих функций:
3. Если отрезок интегрирования разбит на части, то интеграл на всем отрезке равен сумме интегралов для каждой из возникших частей, т.е. при любых a, b, c :
4. Если на отрезке , то и
5. Пределы интегрирования можно менять местами, при этом меняется знак интеграла:
6.
7. Интеграл в точке равен 0:
8.
9. (“о среднем”) Пусть y = f(x) – функция, интегрируемая на [a,b]. Тогда , где , f(c) – среднее значение f(x) на [a,b]:
10. Формула Ньютона-Лейбница
,
где F(x) – первообразная для f(x).
3.2.2 Методы вычисления определенного интеграла.
1. Непосредственное интегрирование
Пример 35.
а)
б)
в)
д)
2. Замена переменных под знаком определенного интеграла.
Пример 36.
2. Интегрирование по частям в определенном интеграле.
Пример 37.
а)
б)
в)
д)
3.2.3 Приложения определенного интеграла
Характеристика |
Вид функции |
Формула |
площадь криволинейной трапеции |
в декартовых координатах |
|
площадь криволинейного сектора |
в полярных координатах |
|
площадь криволинейной трапеции |
в параметрической форме |
|
длина дуги кривой |
в декартовых координатах |
|
длина дуги кривой |
в полярных координатах |
|
длина дуги кривой |
в параметрической форме |
|
объём тела вращения |
в декартовых координатах |
|
объём тела с заданным поперечным сечением |
|
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах