Алгебра и начало анализа

№ 17

Формулы двойных углов

Формулы сложения позволяют выразить sin 2, cos 2, tg 2, ctg 2 через тригономет

рические функции угла . Положим в формулах sin( + ) = sin cos + cos sin , cos( + ) = cos cos - sin sin , , . равным . Получим тождества:

sin 2 = 2 sin cos ; cos 2 = cos2 - sin2 = 1 - sin2 = 2 cos2 - 1; ; .

№ 18

Формулы половинного аргумента

  1. Выразив правую часть формулы cos 2 = cos2 - sin2 через одну тригонометрическую функцию (синус или косинус), придем к соотношениям cos 2 = 1 - sin2 , cos 2 = 2 cos2 - 1. Если в данных соотношениях положить = /2, то получим: cos = 1 - 2 sin2 /2, cos 2 = 2 cos2 /2 - 1. (1)
  2. Из формул (1) следует, что (2), (3).
  3. Разделив почленно равенство (2) на равенство (3), получим (4).
  4. В формулах (2), (3) и (4) знак перед радикалом зависит от того, в какой координатной четверти находится угол /2.
  5. Полезно знать следующую формулу: .

№ 19

Формулы суммы и разности синусов, косинусов

Сумму и разность синусов или косинусов можно представить в виде произведения тригонометрических функций. Формулы, на которых основано такое преобразование, могут быть получены из формул сложения. Чтобы представить в виде произведения сумму sin + sin , положим = x + y и = x - y и воспользуемся формулами синуса суммы и синуса разности. Получим: sin + sin = sin (x + y) + sin (x - y) = sinx cosy + cosx siny + sinx cosy - cosx siny = 2sinx cosy. Решив теперь систему уравнений = x + y, = x - y относительно x и y, получим х = , y = . Следовательно, sin + sin = 2 sin cos . Аналогичным образом выводят формулы: sin -sin = 2 cos sin ; cos + cos = 2 cos cos ; cos + cos = -2 sin sin .

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы