Механизм поперечно-строгального станка
2.2 Расчет диады 4-5
Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.
Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.
Строим план
сил диады в масштабе сил
Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.
Рассчитаем вектора сил
Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.
Значения сил из плана сил
Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.
2.3 Расчет диады 2-3
Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и . В точке В прикладываем ранее найденную реакцию. Составляем уравнение равновесия диады 2-3.
Плечи измеряем на плане. Теперь в уравнении сил две неизвестных, поэтому строим план сил и определяем реакцию, как замыкающий вектор.
Строим план диады в масштабе сил . Значения сил из плана сил.
2.4 Расчет кривошипа
Изобразим кривошип с приложенными к нему силами и уравновешивающей силой , эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем вводя реакции и . Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Составляем уравнение равновесия кривошипа.
Значение силы определяем из плана сил.
2.5 Определение уравновешивающей силы методом Жуковского
Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая и силы инерции. Составим уравнение моментов относительно точки , считая неизвестной:
Подлинность графического метода:
2.6. Определение мощностей
Потери мощности в кинематических парах:
Потери мощности на трение во вращательных парах:
где - коэффициент
- реакция во вращательной паре,
- радиус цапф.
Суммарная мощность трения
Мгновенно потребляемая мощность
Мощность привода, затрачиваемая на преодоление полезной нагрузки.
2.7 Определение кинетической энергии механизма
Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.
Приведенный момент инерции
3 Геометрический расчёт эвольвентного зубчатого зацепления. Синтез планетарного редуктора
3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления
Исходные данные:
число зубьев шестерни: Z=14
число зубьев колеса: Z=28
модуль зубчатых колёс: m=4мм
Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:
- коэффициент высоты головки зуба
- коэффициент радиального зазора
- угол профиля зуба рейки
Суммарное число зубьев колёс:
поэтому проектирую равносмещённое зацепление.
Делительно-межосевое расстояние:
мм
Начальное межосевое расстояние: мм
Угол зацепления:
Высота зуба:
мм
Коэффициент смещения:
Высота головки зуба:
мм
мм
Высота ножки зуба:
мм
мм
Делительный диаметр:
мм
мм
Основной диаметр:
мм
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды