Механизм поперечно-строгального станка

2.2 Расчет диады 4-5

Для расчета этой диады изобразим ее со всеми приложенными к ней силами: силами тяжести, полезного сопротивления и реакциями.

Эти реакции в поступательных парах известны по направлению, но неизвестны по модулю. Определяем с помощью плана сил. Составим уравнение равновесия диады 4-5.

Строим план

сил диады в масштабе сил

Уравнение содержит три неизвестных, поэтому составляем дополнительное уравнение равновесия в форме моментов сил относительно точки С.

Рассчитаем вектора сил

Строим план сил по уравнению сил, в том порядке как силы стояли в уравнении.

Значения сил из плана сил

Для рассмотрения внутренних реакций в диаде 4-5 необходимо рассмотреть равновесие одного звена, звена 4.

2.3 Расчет диады 2-3

Изобразим диаду со всеми приложенными к ней силами. В точках А и О2 взамен отброшенных связей прикладываем реакции и . В точке В прикладываем ранее найденную реакцию. Составляем уравнение равновесия диады 2-3.

Плечи измеряем на плане. Теперь в уравнении сил две неизвестных, поэтому строим план сил и определяем реакцию, как замыкающий вектор.

Строим план диады в масштабе сил . Значения сил из плана сил.

2.4 Расчет кривошипа

Изобразим кривошип с приложенными к нему силами и уравновешивающей силой , эквивалентной силе действия на кривошип со стороны двигателя. Действие отброшенных связей учитываем вводя реакции и . Определяем уравновешивающую силу, считая, что она приложена в точке А кривошипа, перпендикулярно ему. Составляем уравнение равновесия кривошипа.

Значение силы определяем из плана сил.

2.5 Определение уравновешивающей силы методом Жуковского

Строим повернутый на 900 план скоростей и в соответствующих точках прикладываем все внешние силы, включая и силы инерции. Составим уравнение моментов относительно точки , считая неизвестной:

Подлинность графического метода:

2.6. Определение мощностей

Потери мощности в кинематических парах:

Потери мощности на трение во вращательных парах:

где - коэффициент

- реакция во вращательной паре,

- радиус цапф.

Суммарная мощность трения

Мгновенно потребляемая мощность

Мощность привода, затрачиваемая на преодоление полезной нагрузки.

2.7 Определение кинетической энергии механизма

Кинетическая энергия механизма равна сумме кинетических энергий входящих в него массивных звеньев.

Приведенный момент инерции

3 Геометрический расчёт эвольвентного зубчатого зацепления. Синтез планетарного редуктора

3.1 Геометрический расчёт равносмещённого эвольвентного зубчатого зацепления

Исходные данные:

число зубьев шестерни: Z=14

число зубьев колеса: Z=28

модуль зубчатых колёс: m=4мм

Нарезание зубчатых колес производится инструментом реечного типа, имеющего параметры:

- коэффициент высоты головки зуба

- коэффициент радиального зазора

- угол профиля зуба рейки

Суммарное число зубьев колёс:

поэтому проектирую равносмещённое зацепление.

Делительно-межосевое расстояние:

мм

Начальное межосевое расстояние: мм

Угол зацепления:

Высота зуба:

мм

Коэффициент смещения:

Высота головки зуба:

мм

мм

Высота ножки зуба:

мм

мм

Делительный диаметр:

мм

мм

Основной диаметр:

мм

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы