Гидродинамические характеристики стандартов полистиролсульфоната в растворах различной ионной силы
Полиэлектролиты обладают способностью специфически связывать контрионы (образование ионных пар между заряженными группами полиэлектролита и контрионами, ионных тройников и более сложных комплексов). Теория Дебая-Хюккеля, строго говоря, неприменима к полиэлектролитам. Дело в том, что при не очень малых степенях ионизации электростатическое поле вокруг молекулы полиэлектролиты велико, его энергия
в несколько раз больше тепловой.
П. Флори построил теорию на основе объемных эффектов [8]. Электростатическое отталкивание приводит к набуханию клубка, зависящему от ионной силы. Флори предполагал, что клубок вместе с окружающим его растворителем электрически нейтрален. Расчет показывает, что электростатические взаимодействия не могут превратить клубок в вытянутую молекулу, происходит лишь набухание.
О. Б. Птицын развил более строгую теорию [9]. Основное предположение - из-за большего экранирующего действия контрионов заряженные группы макромолекулы, расположенные далеко друг от друга по цепи, взаимодействуют лишь при случайном сближении в результате флуктуационного изгибания цепи. Также, из этой теории следует, что конформационные свойства заряженных макромолекул промежуточны между свойствами ненабухших клубков и жестких стержней.
Макромолекула связывает контрионы. Поэтому полиион при взаимодействии с другими полиионами ведет себя как нейтральная система. Контрионы могут специфически связываться ионизованными группами полиэлектролита. Следует отличать это связывание, сводящееся к образованию солевых связей в фиксированных точках макромолекулы, от неспецифического связывания – образования ионной атмосферы. В солевой связи контрион находится на значительно меньшем расстоянии от полииона, чем то, на которое могут приблизиться подвижные контрионы.
В растворе достаточно сильно заряженных полиэлектролитов часть контрионов удерживается в непосредственной близости к полимерным цепям, эффективно нейтрализуя их заряд – это конденсация контрионов.
Для слабо заряженных полиэлектролитов выраженная конденсация происходит только в плохом растворителе, где блобы (определение блоба исходит из того условия, что внутри блоба цепочка остается невозмущенной) глобулярны и является лавинообразным процессом, приводящим к практически полному осаждению контрионов на молекулах.
Далее следует рассмотреть исследованное как экспериментально, так и теоретически так называемое полиэлектролитное набухание. Причина полиэлектролитного набухания – электростатическое отталкивание одноименно заряженных звеньев цепи, приводящее к развертыванию клубков и увеличению их линейных размеров. Поскольку о размерах макромолекул можно судить по характеристической вязкости [η], пропорциональной объему клубков, первые оценки полиэлектролитного набухания были произведены по измерениям [η] в зависимости от степени ионизации. Было показано, в частности, что при полной ионизации полиметакриловой кислоты [η] может возрасти на два порядка, чему соответствует увеличение линейных размеров клубков в 5-6 раз. Однако при этом сразу возникает вопрос, в какой степени полиэлектролитное набухание можно считать изотропным?
Одна из первых теорий эффекта полиэлектролитного набухания принадлежит А. Качальскому и Лифсону [10]. Они полагали, что функция распределения расстояний между концами заряженной цепи имеет вид
(10)
где индекс "0" соответствует незаряженной цепи, а - электростатическая энергия цепи, вычисляемая как сумма энергий отталкивания всех пар заряженных звеньев. В первоначальном варианте теории, принадлежащем Качальскому, Кюнцле и В. Куну [11], экранирование электростатических взаимодействий, обусловленное образованием дебай-хюккелевской атмосферы противоионов вокруг заряженных групп цепи, не принималось во внимание. Основанием для подобного пренебрежения было следующее неправильное (как было установлено позже) допущение. Плотность атмосферы противоионов, характеризуемая параметром χ в теории Дебая-Хюккеля, определяется ионной силой раствора μ:
(11)
где (12)
– заряд электрона, – валентность иона сорта , – число таких ионов в 1 см3, е – диэлектрическая проницаемость раствора.
Если потенциальная энергия кулонова взаимодействия двух полностью изолированных ионов равна
(13)
то в среде, содержащей ионы противоположного знака (противоионы), благодаря образованию облака противоионов вокруг каждого иона энергия взаимодействия ослабевает и определяется выражением
(14)
Здесь - сумма вандерваальсовых радиусов ионов. Параметр ч имеет геометрический смысл обратной величины эффективного радиуса ионной атмосферы, определяя расстояние от иона, за пределом которого осуществляется полное экранирование взаимодействий.
Качальский, Кюнцле и Кун предположили, что при очень большом разбавлении множитель Дебая-Хюккеля можно принять равным единице, так как противоионы равномерно распределены в объеме раствора, тогда как заряды сосредоточены в малых дискретных областях, занятых макромолекулами. При этом экранирование действительно практически не должно иметь места, и при расчете можно пользоваться кулоновым потенциалом.
Полагая, что W0(h) - гауссова функция, они получили:
(15)
где n – число ионногенных групп в макромолекуле, т.е. в случае гомополимеров степень полимеризации,
i – степень ионизации, определяемая значением pH среды.
Это соотношение предсказывает анизотропное развертывание цепочек с переходом к практически полностью вытянутым конфигурациям. Предположение χ=0, сделанное при выводе этого уравнения, оказалось неверным потому, что на самом деле противоионы не распределены равномерно по объему раствора, а удерживаются электростатическим полем клубка. Кроме того, следует учитывать хотя и слабую, но все же конечную диссоциацию воды.
1.2.4 Электростатический вклад в равновесную жесткость
В теории полиэлектролитов рассматриваются две характеристические длины – радиус Бьеррума и радиус экранирования Дебая-Хюккеля . Радиус Бьеррума характеризует экранирующее действие растворителя. Радиус экранирования Дебая – Хюккеля - расстояние, на котором распространяется действие электрического поля отдельного заряда, помещенного в среду, содержащую другие заряды. Здесь - элементарный заряд, - электрическая постоянная, - диэлектрическая проницаемость среды, – ионная сила раствора, - число -тых ионов в единице объема, - заряд -того иона в единицах .
Другие рефераты на тему «Химия»:
- Азот и его соединения
- Жирорастворимые витамины
- Перспективные композиты XXI века на основе органических и неорганических полимеров. Новые металлические сплавы, приоритетные технологии
- Карбоновые кислоты и их производные
- Кинетика полимеризации изопрена под влиянием каталитических систем на основе карбоксилатных солей лантаноидов