Экономико-математическое моделирование производства
Модель построена, ее уравнение уt=a+b*t, t-момент времени, уt- теоретическое моделирование значения У, а,b- коэффициенты модели
a=40,8611, b=2,6, следовательно уt=40,8611+2,6t
коэффициент регрессии b=2,6, т. е. с каждым годом спрос на кредитные ресурсы финансовой компании в среднем возрастают на 2,6 млн. руб.
Рассмотрим столбец Остатки и построим с помощью «мастер диаграмм» в Exce
l график остатков:
1. Подсчитаем количество поворотных точек р для рядов остатков – р=5
2. Критическое количество определим формулой - ркр=[2*(n-2)/3-1,96*√16*n-29/90]
[ ] – целая часть; n- количество исходных данных
ркр=[2*(9-2)/3-1,96*√16*9-29/90]=2,451106=2
3 сравним фактическое р с ркр
р=5 > ркр=2 следовательно, свойство случайности выполняется.
Для проверки независимости уровней ряда остатков:
1 вычислим d- статистику (критерий Дарбина – Уотсона)
2 вычислить первый коэффициент автокорреляции r(1)
для расчетов подготовим –
∑e2(t) = 25,14 - используем Excel fx/математическая/СУММКВ),
∑(e(t)-e(t-1))2 = 69,72 – используем Excel fx/математическая/СУММКВРАЗН) – 1 массив кроме 1-го, 2 массив кроме последнего.
d=∑(e(t)-e(t-1))2 / ∑e2(t) = 69,72/25,14=2,77327
По таблице Значения d-критерия Дарбина – Уотсона определим, что d1= 1,08 и d2= 1,36
Т.е. наше d=2,77327 € (1.08;1,36), следовательно нужна дополнительная проверка, найдем d’=4-d=4-2,77327=1,22673, т.е d’ € (1,36;2)
следовательно, свойство независимости уровней ряда остатков выполняются, остатки независимы.
Для проверки нормального распределения остатков вычислим R/S – статистику
R/S=emax-emin / Se
еmax- максимальный уровень ряда остатков,
еmin- минимальный уровень ряда остатков,
S- среднеквадратичное отклонение.
еmax=2,055555556 используем Excel fx/статистическая/МАКС),
еmin=-3,194444444 используем Excel fx/статистическая/МИН),
Se=1,895064601 1-я таблица Итогов регрессии строка «стандартная ошибка»
Следовательно, R/S=2,770354107
Критический интервал (2,7;3,7), т.е R/S=2,770354107 € (2,7;3,7), свойство нормального распределения остатков выполняется.
Подводя итоги проверки можно сделать вывод, что модель ведет себя адекватно.
Для оценки точности модели вычислим среднюю относительную ошибку аппроксимации Еотн = |e(t)/Y(t)|*100% по полученным значениям определить среднее значение (fx/математическая/СРЗНАЧ)
относит. погр-ти | |
-1,033591731 | |
2,06855792 | |
2,777777778 | |
-6,655092593 | |
0,411522634 | |
1,1208577 | |
3,369763206 | |
-4,284369115 | |
1,367521368 | |
Е ср.отн= |
-0,095228093 |
Для вычисления точечного прогноза в построенную модель подставим соответствующие значения t=10 и t=11:
у10=40,8611+2,6*10=66,8611
у11=40,8611+2,7*11=70,5611,
Ожидаемый спрос на кредитные ресурсы финансовой компании на 10 неделю должен составить около 66,8611 млн. руб., а на 11 неделю около 70,5611 млн. руб.
При уровне значимости L=30%, доверительная вероятность равна 70%, а критерий Стьюдента при к=n-2=9-2=7, равен
tкр(30%;7)=1,119159128 (fx/статистическая/СТЬЮДРАСПОБР),
Se=1,895064601 1-я таблица Итогов регрессии строка «стандартная ошибка»,
t’ср = 5(fx/математическая/СРЗНАЧ) - средний уровень по рассматриваемому моменту времени,
∑(t-t’ср)=60 (fx/статистическая/КВАДРОТКЛ),
Ширину доверительного интервала вычислим по формуле:
U1=t*Se*√1+1/n+(t*-t’)2/∑(t-t’ср)=1,119159128*1,895064601* √1+1/9+(10-5)2/60 = =2,621476416
U2=t*Se*√1+1/n+(t*-t’)2/∑(t-t’ср)=1,119159128*1,895064601*√1+1/10++(11-5)2/60= =2,765287696
Далее вычислим верхнюю и нижнюю границы прогноза uниж=y10-u1; uверх=у10+u1; uниж=y11-u1; uверх=у10+u1
uниж=66,8611-2,621476416=64,239623584
uверх=66,8611+2,621476416=69,482576416
uниж=70,5611-2,765287696=67,795812304
uниж=70,5611+2,765287696=73,326387696
Спрос на кредитные ресурсы финансовой компании на 10 неделю в пределах от 64,239623584 млн. руб. до 69,482576416 млн. руб., а на 11 неделю от 67,795812304 млн. руб. до 73,326387696 млн. руб.
Строим график:
Другие рефераты на тему «Экономико-математическое моделирование»:
- Нахождение минимальных затрат при распределении товаров среди магазинов методами решения транспортной задачи
- НТР на современном етапе розвития
- Решение оптимизационных управленческих задач на основе методов и моделей линейного программирования
- Выборочные исследования в эконометрике
- Динамика урожайности зерновых
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели