Эконометрическое моделирование - расчет коэффициентов корреляции и регрессии, анализ одномерного временного ряда

Уравнение регрессии зависимости цены квартиры от города области и общей площади квартиры, полученное на последнем шаге, можно записать в следующем виде

y = 10,255 - 34,558Х1 + 1,492Х3

Коэффициенты уравнения регрессии показывают, что в Подольске цена квартиры меньше, чем в Люберцах на 34,558 тыс. долл., а при увеличении общей площадина один квадратный метрцена квартиры увеличится на 1,

492 тыс. долл.

7)Оценка качества построенной модели. Оценка влияния значимых факторов на результат с помощью коэффициентов эластичности,  - и  - коэффициентов

Сравним индекс корреляции R и коэффициент детерминации R2 полученной модели с однофакторной моделью.

Таблица 5

 

Коэффициент корреляции R

Коэффициент детерминации R2

однофакторная модель

0,846

0,715

двухфакторная модель

0,909

0,827

Из таблицы (5) видно, что качество новой модели лучше предыдущей однофакторной, т.к. коэффициенты ближе к единице.

Теперь оценим влияние значимых факторов на результат с помощью коэффициентов эластичности, - коэффициентов с помощью формул:

, и ,

где

1) = = -0,212

=

Отсюда видно, что при изменении Х1 на 1% значение Y уменьшится на 21,2%. А при изменении Х3 на 1% значение Y увеличится на 110,3%.

2) Найдем коэффициенты β для параметра Х1 и Х3. Сначала вычислим среднеквадратические отклонения:

=

=

=

Тогда:

=

=

Анализ полученных данных показывает, что при увеличении Х1 на 0,5006 цена квартиры уменьшится на 0,336*51,492 = 17,301 тыс. долл. А при увеличении общей площади на 28,225 м2 Цена квартиры увеличится на 0,817*51,492 = 42,07 тыс. долл.

3) Вычислим коэффициенты Δ для параметров Х1 и Х3:

= -0,403 * (-0,336) / 0,827 = 0,164

= 0,846 * 0,817 / 0,827 = 0,836

Из полученных данных мы видим, что доля влияния фактора город (Х1) в суммарном влиянии всех факторов составляет 0,164 или 16,4%, тогда как доля влияния фактора общая площадь – 0,836 или 83,6%.

Задача №2. Исследование динамики экономического показателя на основе анализа одномерного временного ряда

Таблица 6– Исходные данные

t

1

2

3

4

5

6

7

8

9

yt

20

27

30

41

45

51

51

55

61

1. Выявление аномальных наблюдений

Построим график временного ряда

Для выявления аномальных наблюдений воспользуемся методом Ирвина. Для всех наблюдений вычисляем величину по формуле:

,

Где ,

Результаты расчетов по методу Ирвина приведены в таблице (6)

Таблица 6

t

1

2

3

4

5

6

7

8

9

yt

20

27

30

41

45

51

51

55

61

-

0,502

0,215

0,789

0,287

0,431

0

0,287

0,431

По результатам расчетов аномальных наблюдений нет, т.к. расчетные величины не превышают табличных значений.

2. Построение линейной модели

Таблица 7 - Промежуточные расчеты параметров линейной модели

t

( )()

1

20

-4

16

-22,333

89,332

22,333

-2,333

2

27

-3

9

-15,333

45,999

27,333

-0,333

3

30

-2

4

-12,333

24,666

32,333

-2,333

4

41

-1

1

-1,333

1,333

37,333

3,666

5

45

0

0

2,667

0

42,333

2,666

6

51

1

1

8,667

8,667

47,333

3,666

7

51

2

4

8,667

17,334

52,333

-1,333

8

55

3

9

12,667

38,001

57,333

-2,333

9

61

4

16

18,667

74,668

62,333

-1,333

42,333

 

60

 

300

 

0

Страница:  1  2  3  4 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2025 - www.refsru.com - рефераты, курсовые и дипломные работы