Разработка программных средств анализа графика функции и решение оптимизационных задач
Ссылка указывает на ячейку или диапазон ячеек листа и передает в Microsoft Excel сведения о расположении значений или данных, которые требуется использовать в формуле. При помощи ссылок можно использовать в одной формуле данные, находящиеся в разных частях листа, а также использовать в нескольких формулах значение одной ячейки. Кроме того, можно задавать ссылки на ячейки других листов той же кн
иги и на другие книги. Ссылки на ячейки других книг называются связями.
Существуют относительные, абсолютные и смешанные ссылки.
Относительная ссылка в формуле, например A1, основана на относительной позиции ячейки, содержащей формулу, и ячейку, на которую указывает ссылка. При изменении позиции ячейки, содержащей формулу, изменяется и ссылка.
Абсолютная ссылка ячейки в формуле, например $A$1, всегда ссылается на ячейку, расположенную в определенном месте. При изменении позиции ячейки, содержащей формулу, абсолютная ссылка не изменяется.
Смешанная ссылка содержит либо абсолютный столбец и относительную строку, либо абсолютную строку и относительный столбец. Абсолютная ссылка столбцов приобретает вид $A1, $B1 и т. д. Абсолютная ссылка строки приобретает вид A$1, B$1 и т. д.
4 Общие сведения об алгоритмах.
Алгоритм – предписание последовательности действий, направленных на решение поставленной задачи. В Exel алгоритм записывается в виде последовательности операторов, включающих значение, ссылки и формулы.
Алгоритм обладает свойствами:
1) однозначности – исключает произвольное толкование и приводит к одному и тому же результату при одинаковых исходных данных;
2) массовости – применяется к другим подобным задачам;
3) результативность – пошаговое выполнение задачи приводит к конечному результату.
Выделяется несколько типов алгоритмических структур:
1. Линейная структура.
2. Разветвляющая структура:
а) с одной ветвью;
б) с двумя ветвями;
в) со множеством ветвей.
3. Циклическая структура.
Принято выделять две циклические структуры с логическим условием до и после тела цикла.
Применительно к электронным таблицам это не совсем точно и справедливо, так как важен и способ организации выхода из цикла, а это:
- бесконечный цикл;
- вложенные циклические структуры;
- цикл с заданным заранее количеством повторений;
-расчетно-динамический цикл (новый, характерный для электронной таблицы), количество повторений которого определяется в ходе пересчета таблицы, а параметры задаются в результате ссылки на ячейку, где содержаться расчетно-переменные данные.
- итерационный цикл (количество повторений заранее неизвестно и зависит от осуществления или достижения заданной точности или последовательности приближений к искомому значению, где вычисление последующего члена производится через предыдущий член);
5 Метод половинного деления
Этот метод отличается от выше рассмотренных методов тем, что для него не требуется выполнения условия, что первая и вторая производная сохраняют знак на интервале [a, b]. Метод половинного деления сходится для любых непрерывных функций f(x) в том числе недифференцируемых.
Разделим отрезок [a, b] пополам точкой Если (что практически наиболее вероятно), то возможны два случая: либо f(x) меняет знак на отрезке [a, c] (Рис. 1), либо на отрезке [c, b] (Рис. 2)
Рис. 1 |
Рис. 2 |
Выбирая в каждом случае тот отрезок, на котором функция меняет знак, и продолжая процесс половинного деления дальше, можно дойти до сколь угодно малого отрезка, содержащего корень уравнения.
6 РЕШЕНИЕ ЗАДАЧИ
Дана следующая функция:
F(х)=60*sin(5.5*x*pi/180)-69*cos(2.7*x*pi/180)-exp(x/192)-181/x
где Х изменяется от 0 до 400. Найти точки пересечения функции с точкой А (А=0).
Для нахождения точек пересечения используем метод половинного деления. Для этого от данной функции отнимем А (F(x)-А).
Построим алгоритм (приложение А).
Для того, что бы найти точки пересечения функции с точкой А, построим график (приложение В) по данным приведенным в таблице (приложение Г).
В графе Е2 введем формулу для нахождения значений где происходит смена знака =ЕСЛИ(В2*В3<=0; “смена знака”;” “).
По полученным данным найдем точки пересечения данной функции с точкой А в точках где происходит смена знака.
Например, смена знака происходит при значении Х=15, тогда в ячейку G2 введем значение Х1=15,а в ячейку G3 введем формулу =ЕСЛИ(J2*L2<=0;G2;I2). В ячейку Н2-значение Х2=20, а в ячейку Н3 введем формулу =ЕСЛИ(J2*L2<=0;I2;H2), это значит, что на этом интервале про исходит пересечение функции с координатной осью, то есть с точкой А. Для нахождения среднего значения в ячейку I2 введем формулу =(G2+H2)/2. В ячейки J2, K2, L2 введем формулы заданной в условии функции, где Х, для каждой из заданных ячеек, будет принимать значение Х1, Х2, Хср. соответственно.
Для того, чтобы определить на какой половине происходит смена знака в ячейку М2 введем формулу
=ЕСЛИ(J2*L2<=0;”смена знака на 1-ой половине”;”cмена знака на 2-ой половине”).
В столбце N приведено количество шагов, за которое будит достигнута точность определения значения (х) не ниже 0,001.
Для определения погрешности, в ячейку О2 введем формулу =0-L2. Таким образом из приведенной таблицы видно, что значение Х с точностью до 0,001 определено за 14 шагов.
X1 |
X2 |
Xср |
F(x1) |
F(x2) |
F(xcр) |
Кол-во шагов | Погреш-ность | |
15,000 |
20,000 |
17,500 |
-6,129 |
5,665 |
1,368 |
смена знака на 1-ой половине |
1 |
-1,3678 |
15,000 |
17,500 |
16,250 |
-6,129 |
1,368 |
-1,969 |
смена знака на 2-ой половине |
2 |
1,9692 |
16,250 |
17,500 |
16,875 |
-1,969 |
1,368 |
-0,199 |
смена знака на 2-ой половине |
3 |
0,1991 |
16,875 |
17,500 |
17,188 |
-0,199 |
1,368 |
0,610 |
смена знака на 1-ой половине |
4 |
-0,6096 |
16,875 |
17,188 |
17,031 |
-0,199 |
0,610 |
0,212 |
смена знака на 1-ой половине |
5 |
-0,2116 |
16,875 |
17,031 |
16,953 |
-0,199 |
0,212 |
0,008 |
смена знака на 1-ой половине |
6 |
-0,0078 |
16,875 |
16,953 |
16,914 |
-0,199 |
0,008 |
-0,095 |
смена знака на 2-ой половине |
7 |
0,0952 |
16,914 |
16,953 |
16,934 |
-0,095 |
0,008 |
-0,044 |
смена знака на 2-ой половине |
8 |
0,0436 |
16,934 |
16,953 |
16,943 |
-0,044 |
0,008 |
-0,018 |
смена знака на 2-ой половине |
9 |
0,0179 |
16,943 |
16,953 |
16,948 |
-0,018 |
0,008 |
-0,005 |
смена знака на 2-ой половине |
10 |
0,0050 |
16,948 |
16,953 |
16,951 |
-0,005 |
0,008 |
0,001 |
смена знака на 1-ой половине |
11 |
-0,0014 |
16,948 |
16,951 |
16,949 |
-0,005 |
0,001 |
-0,002 |
смена знака на 2-ой половине |
12 |
0,0018 |
16,949 |
16,951 |
16,950 |
-0,002 |
0,001 |
0,000 |
смена знака на 2-ой половине |
13 |
0,0002 |
16,950 |
16,951 |
16,950 |
0,000 |
0,001 |
0,001 |
смена знака на 1-ой половине |
14 |
-0,0006 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели