Математическая статистика

,

.

Следовательно получим следующее математическое выражение

.

При заданном значении X=4 получим, что коэффициент эластичности равен Э=0,25.

Допустим, что заданная функция 1 height=25 src="images/referats/5481/image001.png">определяет зависимость спроса от цены. В этом случае с ростом цены на 4% спрос повысится в среднем на 0,25 %.

3. Производительность труда, фондоотдача и уровень рентабельности по хлебозаводам области за год характеризуются следующими данными:

№ завода

Фактор

Уровень рентабельности,

%

Фондоотдача, грн

Производительность труда, грн

1

38,9

3742

10,7

2

33,3

2983

11,3

3

37,7

3000

12,2

4

31,1

2537

12,4

5

29,4

2421

10,9

6

37,2

3047

11,3

7

35,6

3002

11,1

8

34,1

2887

14,0

9

16,1

2177

6,8

10

22,8

2141

7,1

11

21,7

2005

8,9

12

26,8

1843

4,2

13

23,3

2031

7,4

14

24,5

2340

11,4

15

19,9

1933

4,8

Нелинейную зависимость принять

Последовательность выполнения задания 3

1. Вводим данные .Определяем основные числовые характеристики.

2. Строим диаграмму рассеивания (корреляционное поле).

3. Определяем тесноту линейной связи по коэффициенту корреляции.

4. Строим линейную модель вида у = bо + b1*х.

5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера

6. Проверяем статистическую значимость коэффициентов модели.

7. По полученной модели рассчитываем значение показателя Y для всех точек выборки и в точке прогноза (точку прогноза выбираем произвольно из области прогноза).

8. Рассчитаем полуширину доверительного интервала d. =

9. Рассчитаем доверительный интервал для всех точек выборки и в точке прогноза: (Y-d, Y +d).

10. Рассчитываем коэффициент эластичности:

Для линейной модели y’х = b1. Получим

, где у(х) - рассчитанное по модели значение показателя.

11. Строим, используя «Мастер диаграмм», корреляционное поле, график эластичности и доверительную область.

12. Делаем лист с формулами.

Решение 1:

1. Вводим данные. Определяем основные статистики. Строим корреляционное поле. По виду корреляционного поля выдвигаем гипотезу о нелинейной зависимости между X и Y.

2. С помощью формул перехода линеаризуем нелинейную модель: , V=у. Получаем линейную модель относительно новых переменных

V = b0 + b1u

3. Рассчитываем основные числовые характеристики X, Y, V, U с помощью «Мастера функций» и функции «Описательная статистика».

4. Продолжим регрессионный анализ с помощью вкладки «Анализ данных» и функции «Регрессия».

5. Вычислим значения V(U),V min, V max.

6. Рассчитаем полуширину доверительного интервала d .

7. По формулам обратного перехода пересчитываем значения Y, Ymin (левая граница доверительного интервала»,Ymaх(правая граница доверительного интервала).

8. Рассчитываем коэффициент эластичности

,

9. Строим доверительные области V(U) и Y(х) и график эластичности.

10. Делаем лист с формулами.

Решение 2:

1. Вводим данные.

2. Определяем основные статистики.

3. По корреляционной таблице проверяем факторы на коллинеарность.

4. Строим линейную модель вида y = b0+b1х+b2х.

5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера.

6. Проверяем статистическую значимость коэффициентов модели.

7. По полученной модели рассчитываем значения показателя Y для всех точек выборки и в точке прогноза(точку прогноза выбрали произвольно из области прогноза).

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы