Математическая статистика
,
.
Следовательно получим следующее математическое выражение
.
При заданном значении X=4 получим, что коэффициент эластичности равен Э=0,25.
Допустим, что заданная функция 1 height=25 src="images/referats/5481/image001.png">определяет зависимость спроса от цены. В этом случае с ростом цены на 4% спрос повысится в среднем на 0,25 %.
3. Производительность труда, фондоотдача и уровень рентабельности по хлебозаводам области за год характеризуются следующими данными:
№ завода |
Фактор |
Уровень рентабельности, % | |
Фондоотдача, грн |
Производительность труда, грн | ||
1 |
38,9 |
3742 |
10,7 |
2 |
33,3 |
2983 |
11,3 |
3 |
37,7 |
3000 |
12,2 |
4 |
31,1 |
2537 |
12,4 |
5 |
29,4 |
2421 |
10,9 |
6 |
37,2 |
3047 |
11,3 |
7 |
35,6 |
3002 |
11,1 |
8 |
34,1 |
2887 |
14,0 |
9 |
16,1 |
2177 |
6,8 |
10 |
22,8 |
2141 |
7,1 |
11 |
21,7 |
2005 |
8,9 |
12 |
26,8 |
1843 |
4,2 |
13 |
23,3 |
2031 |
7,4 |
14 |
24,5 |
2340 |
11,4 |
15 |
19,9 |
1933 |
4,8 |
Нелинейную зависимость принять
Последовательность выполнения задания 3
1. Вводим данные .Определяем основные числовые характеристики.
2. Строим диаграмму рассеивания (корреляционное поле).
3. Определяем тесноту линейной связи по коэффициенту корреляции.
4. Строим линейную модель вида у = bо + b1*х.
5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера
6. Проверяем статистическую значимость коэффициентов модели.
7. По полученной модели рассчитываем значение показателя Y для всех точек выборки и в точке прогноза (точку прогноза выбираем произвольно из области прогноза).
8. Рассчитаем полуширину доверительного интервала d. =
9. Рассчитаем доверительный интервал для всех точек выборки и в точке прогноза: (Y-d, Y +d).
10. Рассчитываем коэффициент эластичности:
Для линейной модели y’х = b1. Получим
, где у(х) - рассчитанное по модели значение показателя.
11. Строим, используя «Мастер диаграмм», корреляционное поле, график эластичности и доверительную область.
12. Делаем лист с формулами.
Решение 1:
1. Вводим данные. Определяем основные статистики. Строим корреляционное поле. По виду корреляционного поля выдвигаем гипотезу о нелинейной зависимости между X и Y.
2. С помощью формул перехода линеаризуем нелинейную модель: , V=у. Получаем линейную модель относительно новых переменных
V = b0 + b1u
3. Рассчитываем основные числовые характеристики X, Y, V, U с помощью «Мастера функций» и функции «Описательная статистика».
4. Продолжим регрессионный анализ с помощью вкладки «Анализ данных» и функции «Регрессия».
5. Вычислим значения V(U),V min, V max.
6. Рассчитаем полуширину доверительного интервала d .
7. По формулам обратного перехода пересчитываем значения Y, Ymin (левая граница доверительного интервала»,Ymaх(правая граница доверительного интервала).
8. Рассчитываем коэффициент эластичности
,
9. Строим доверительные области V(U) и Y(х) и график эластичности.
10. Делаем лист с формулами.
Решение 2:
1. Вводим данные.
2. Определяем основные статистики.
3. По корреляционной таблице проверяем факторы на коллинеарность.
4. Строим линейную модель вида y = b0+b1х+b2х.
5. Определяем общее качество модели по коэффициенту детерминации R2. Проверяем полученную модель на адекватность по критерию Фишера.
6. Проверяем статистическую значимость коэффициентов модели.
7. По полученной модели рассчитываем значения показателя Y для всех точек выборки и в точке прогноза(точку прогноза выбрали произвольно из области прогноза).
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели