Математическая статистика

По таблице строим корреляционное поле (диаграмму рассеивания) - нанесем точки (X, Y) на график.

По виду корреляционного поля можно предположить, что зависимость между Y и X нелинейная.

Пытаемся описать связь между X и Y зависимостью .

Перейдем к линейной модели. Делаем линеаризующую подстановку: src="images/referats/5481/image060.png">. Получим новые данные U и V. Для этих данных строим линейную модель: . Проверим тесноту линейной связи U и V. Найдем коэффициент корреляции (из таблицы Регрессионная статистика): .Между U и V достаточная связь.

Параметры находим по методу наименьших квадратов.

Значимость коэффициента может быть проверена с помощью критерия Стьюдента:

.

Значимость равна 0,0021, что практически равно 0%. Это меньше 5%. Коэффициент статистически значим.

.

Значимость равна0,00083, что практически равно 0%. Это меньше 5%. Коэффициент статистически значим.

Получили линейную модель .

Проверим модель на адекватность. Проанализировав таблицу дисперсионный анализ можно сказать, разброс данных, объясняемый регрессией . Остатки, необъясненный разброс . Общий разброс данных . Коэффициент детерминации . Разброс данных объясняется на 59,92% линейной моделью и на 40,08% - случайными ошибками.

Проверим модель с помощью критерия Фишера. Для проверки найдем величины: и . Вычисляем и . Находим наблюдаемое значение критерия Фишера . Значимость этого критерия , т.е. процент ошибки практически равен 0%, что меньше чем 5%. Модель считается адекватной с гарантией более 95%. Так как линейная модель адекватна, то и соответствующая ей нелинейная модель адекватна. Находим параметры исходной нелинейной модели: ; .

Вид нелинейной функции: . Таким образом, можно сказать, что зависимость уровня рентабельности от производительности труда можно описать следующей функцией: .

Найдем прогноз. Примем за точку прогноза значение производительности труда 2500 грн.

Рассчитываем прогнозные значения по модели для всех точек выборки и для точки прогноза: .

.

Построим доверительную область для точки прогноза и всех точек.

Найдем полуширину доверительного интервала в каждой точке выборки:

,

где - среднеквадратическое отклонение выборочных точек от линии регрессии; ;

*‑ критическая точка распределения Стьюдента для надежности и ; .

Прогнозируемый доверительный интервал для любого x такой , где , т.е. доверительный интервал для составит от 5,35 до 14,03 с гарантией 95%., т.е. при производительности 2500 грн. Уровень рентабельности составит от 5,35% до 14,03%.

Для нелинейной модели найдем доверительный интервал, воспользовавшись обратной заменой: . Совокупность доверительных интервалов для всех X из области прогнозов образует доверительную область.

Найдем эластичность.

Для линейной модели тогда .

Коэффициент эластичности для точки прогноза:

Коэффициент эластичности показывает, что при увеличении производительности на 1% уровень рентабельности увеличится с 9,69% на 1.1%. Т.е. при увеличении производительности труда рентабельность растет.

Задание № 3.3

Обозначим Фондоотдачу (грн.) – Х1, Производительность труда в расчете на одного работника (грн) – X2, Уровень рентабельности (%) – Y. Построим линейную зависимость показателя от факторов.

Прежде чем строить модель проверим факторы на коллинеарность. По исходным данным строим корреляционную матрицу. Коэффициент корреляции между X1 и X2 равен 0,87. Так как , значит X1 и X2 – неколлинеарные факторы. Пытаемся описать связь между X и Y зависимостью .

Параметры находим по методу наименьших квадратов.

.

Проверим значимость коэффициентов .

Значимость коэффициента может быть проверена с помощью критерия Стьюдента:

.

Значимость равна 0,99, т.е 99% больше 5%. Коэффициент статистически незначим.

Страница:  1  2  3  4  5 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы