Математическая статистика
Задания к контрольной работе
1. Генеральная совокупность. Выборка. Объем выборки. Среднее значение. Дисперсия. Среднеквадратическое отклонение.
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический вывод. Модель : ; X = 4;
3. Для представленных данных выполнить
следующее задание:
3.1 Провести эконометрический анализ линейной зависимости показателя от первого фактора. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
3.2 Провести эконометрический анализ нелинейной зависимости показателя от второго фактора, воспользовавшись подсказкой. Сделать прогноз для любой точки из области прогноза, построить доверительную область. Найти коэффициент эластичности в точке прогноза.
3.3 Провести эконометрический анализ линейной зависимости показателя от двух факторов. Сделать точечный прогноз для любой точки из области прогноза. Найти частичные коэффициенты эластичности в точке прогноза.
Производительность труда, фондоотдача и уровень рентабельности по хлебозаводам области за год характеризуются следующими данными:
№ завода |
Фактор |
Уровень рентабельности, % | |
Фондоотдача, грн |
Производительность труда, грн | ||
1 |
38,9 |
3742 |
10,7 |
2 |
33,3 |
2983 |
11,3 |
3 |
37,7 |
3000 |
12,2 |
4 |
31,1 |
2537 |
12,4 |
5 |
29,4 |
2421 |
10,9 |
6 |
37,2 |
3047 |
11,3 |
7 |
35,6 |
3002 |
11,1 |
8 |
34,1 |
2887 |
14,0 |
9 |
16,1 |
2177 |
6,8 |
10 |
22,8 |
2141 |
7,1 |
11 |
21,7 |
2005 |
8,9 |
12 |
26,8 |
1843 |
4,2 |
13 |
23,3 |
2031 |
7,4 |
14 |
24,5 |
2340 |
11,4 |
15 |
19,9 |
1933 |
4,8 |
Нелинейную зависимость принять
1. Генеральная совокупность. Выборка. Объем выборки. Среднее значение. Дисперсия. Среднеквадратическое отклонение
Генеральная совокупность - вся изучаемая выборочным методом статистическая совокупность объектов и/или явлений общественной жизни, имеющих общие качественные признаки или количественные переменные.
Выборочная совокупность (выборка)- часть объектов из генеральной совокупности, отобранных для изучения, с тем чтобы сделать заключение о всей генеральной совокупности.
Для того, чтобы заключение, полученное путем изучения выборки , можно было распространить на всю генеральную совокупность выборка должна обладать свойством репрезентативности.
Объем выборки - общее число единиц наблюдения в выборочной совокупности. Определение объема выборки представляет собой один из основных этапов ее формирования. Объем выборки для генеральной совокупности обозначается– N, для выборки – n.
Среднее значение выборки можно вычислить по формуле:
Дисперсия (от лат. dispersio - рассеяние), в математической статистике и теории вероятностей, наиболее употребительная мера рассеивания, т. е. отклонения от среднего. Дисперсия вычисляется по формуле:
- простая дисперсия,
- взвешенная дисперсия.
Дисперсия есть средняя величина квадратов отклонений. Для этого достаточно извлечь из дисперсии корень второй степени, получится среднее квадратическое отклонение ().
или
.
Среднее квадратическое отклонение – это обобщающая характеристика размеров вариации признака в совокупности.
2. Найти коэффициент эластичности для указанной модели в заданной точке X. Сделать экономический анализ
Известно, что коэффициент эластичности показывает, на сколько процентов изменится в среднем результат, если фактор изменится на 1 %. Формула расчета коэффициента эластичности:
Э = f′(x)X/Y,
где f′(x) – первая производная, характеризующая соотношение прироста результата и фактора для соответствующей формы связи.
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели