Устройства передачи информации по сети электропитания
Поскольку энергосеть имеет свои отличительные особенности от других сред передачи данных, такие как высокое напряжение (220/380 В) и промчастоту (50 Гц), то для организации высокочастотной связи необходимо использовать устройства присоединения, которые соединяют передатчик (приемник) к среде. Устройством присоединения обычно является полосовой фильтр, включающий в себя конденсаторы присоединени
я, и выполняющий следующие функции:
- отсекает промчастоту и пропускает только полезный высокочастотный сигнал;
- служит заградительным устройством для высокого напряжения;
- служит согласующим элементом между высокочастотным кабелем и линейным трактом, так как волновое сопротивление кабеля не равно характеристическому сопротивлению линейного тракта [6].
Для проведения измерений амплитудно-частотных характеристик линий энергосети так же необходимо использовать устройство присоединения.
Заранее можно предположить, что на низких частотах в энергосети будет иметь место сильное влияние промчастоты, а так же сильные помехи от переходных процессов, регулярно присутствующих в энергосети. Поэтому область нижних частот не подходит для передачи данных и измерения амплитудно-частотной характеристики энергосети целесообразно проводить на высоких частотах (более 200 кГц).
Для проведения измерений было выбрано устройство присоединения, принципиальная схема которого приведена на рис. 2.1, со значениями С=100 нФ, R=2.2 кОм.
Значения элементов схемы выбраны с учетом обеспечения максимального коэффициента передачи в используемой полосе частот. Такое устройство присоединения имеет следующие амплитудно-частотные характеристики (рис. 2.2 и 2.3).
Рисунок 2.1 – Принципиальная схема устройства присоединения построенного на RC-фильтре
Рисунок 2.2 – Амплитудно-частотная характеристика устройства присоединения со стороны входа.
Рисунок 2.3 – Амплитудно-частотная характеристика устройства присоединения со стороны линии.
Амплитудно-частотные характеристики позволили определить диапазон, частот в котором устройство присоединения имеет минимальное влияние. Таким диапазоном оказался диапазон от 200 кГц и выше, в котором устройство имеет характеристики удовлетворяющие условиям проведения измерений и организации передачи данных.
Таким образом, для определения усредненной амплитудно-частотной характеристики сетей электропитания, провелся ряд экспериментальных измерений. Измерения проводились в условиях наиболее приближенным к условиям эксплуатации разрабатываемого устройства. Для получения наиболее точных данных было проведено большое количество измерений на различных участках энергосети, что позволило определить общий характер помех в энергосети. Во время проведения измерений на диапазоне частот до 500 кГц были выявлены помехи, имеющие случайный характер с большими амплитудами. Это помехи от переходных процессов и они имеют большое влияние в полосе частот до 500 кГц. С ростом частоты помехи имеют меньшие амплитуды и их спектральные составляющие расположены довольно редко, что позволяет найти диапазоны, в которых можно передавать данные. Однако так же с ростом частоты в энергосети увеличивается затухание передаваемых сигналов [6]. Эти условия вынуждают ограничить возможный частотный диапазон передачи данных от 500 кГц до 1 МГц.
Измерения проводились с помощью следующих приборов: генератор стандартных сигналов Г4-18А, генератор сигналов низкочастотный Г3-102, генератор сигналов низкочастотный Г3-56/1, осциллограф универсальный С1-70, анализатор спектра С4-25.
По результатам измерений был построен спектр сети электропитания (рис. 2.4).
Исходя из полученного спектра, видно, что уровни помех на данном частотном диапазоне не превышают 300 мкВ. Не смотря на то, что уровень помех не велик для обеспечения наиболее надежной передачи данных, выбирается диапазон частот с наименьшими помехами.
Рисунок 2.4 – Распределение помех в частотной области канала связи
Проведенные измерения амплитудно-частотной характеристики энергосети показали, что в диапазоне частот от 500 кГц до 1 МГц довольно плотный спектр помех. Однако присутствует несколько участков диапазона, в которых помехи на столько малы, что ими можно пренебречь. Это участки 649 – 695 кГц, 745 – 795 кГц, 830 – 880 кГц, 886 – 932 кГц и 943 – 988 кГц.
Таким образом, выбираем четыре диапазона частот с равными полосами 45 кГц (649 – 695 кГц, 745 – 795 кГц, 830 – 880 кГц и 943 – 988 кГц). Отсюда можно предположить, что система передачи данных по энергосети может работать в полудуплексном режиме, при этом используется разделение передаваемого потока данных на две полосы, а также для повышения надежности системы - резервирование. То есть по двум (основным) частотным диапазонам передается поток данных, разделенный на две части. Резервирование осуществляется на других двух частотных диапазонах (когда основные диапазоны находятся в нерабочем состоянии, система начинает работать на резервных диапазонах аналогично работе на основных). При выборе основных и резервных диапазонов, следует учесть характер действующих помех. То есть помехи, действующие в одном диапазоне, не должны проявляться в другом. Для этого диапазоны максимально разносятся по частоте. Это все позволяет увеличить помехоустойчивость системы.
Выбираем основными диапазонами передачи данных диапазоны 649 – 695 кГц (ширина 46 кГц) и 830 – 880 кГц (ширина 50 кГц). Резервными диапазонами выбираем 745 – 795 кГц и 943 – 988 кГц.
3. СТРУКТУРНАЯ СХЕМА СИСТЕМЫ ПЕРЕДАЧИ ИНФОРМАЦИИ
Для организации передачи данных по энергосетям передаваемая информация подвергается тем же преобразованиям, что и при передаче данных по телефонной сети общего пользования. То есть передаваемая информация на передающем конце подвергается кодированию, цифро-аналоговому преобразованию и модуляции, а на приемном конце – демодуляции, аналого-цифровому преобразованию и декодированию.
Поскольку каждый абонент системы передачи данных является как источником, так и получателем информации, то на каждом ПК необходимо организовать передающую и приемную части системы. Это удобно организовать, используя для передатчика и приемника один внутренний и внешний интерфейсы. Таким образом, обобщеная структурная схема системы передачи данных на одном ПК будет иметь следующий вид (рис. 3.1).
Рисунок 3.1 – Обобщеная схема системы передачи данных
Из рис. 3.1 видно, что передаваемые информация в цифровом виде поступает в устройство передачи данных через внутренний интерфейс. Внутренний интерфейс служит для выделения из всего потока данных, которые передаются по внутренней шине данных ПК, тех, которые предназначены для передачи в линию связи. Процесс выделения происходит в соответствии адресной информацией, передаваемой по шине адреса. Из этого следует, что внутренний интерфейс обеспечивает поступление в передающее устройство только тех данных, которые необходимо передать по линии связи. Таким же образом, принятые приемником данные, передаются через внутренний интерфейс в ПК для дальнейшей обработки.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем