Устройства передачи информации по сети электропитания

Делители частоты предназначены для преобразования частоты опорного генератора в несущие частоты путем ее деления. Высокодобротные полосовые фильтры служат для выделения из спектра полученных импульсов необходимую составляющую.

6. ОПИСАНИЕ ВНЕШНЕГО ИНТЕРФЕЙСА УСТРОЙСТВА

Как отмечалось в разделе 3, внешний интерфейс передающей части устройства передачи данных состоит из полосовых ф

ильтров, предназначенных для ограничения спектра передаваемых сигналов в диапазоне передачи, адаптивного эквалайзера, эхокомпенсатора, усилителя и устройства присоединения.

6.1 Расчет полосовых фильтров

Поскольку передача данных осуществляется в четырех частотных диапазонах, которые расположены довольно близко друг от друга, то появляется необходимость ограничения спектров передаваемых сигналов в рамках частотного диапазона. Ограничение производится для того, чтобы сигналы, передаваемые в одном диапазоне, не влияли на сигналы, которые передаются в другом частотном диапазоне. Для ограничения спектров используются полосовые фильтры, настроенные каждый на свою резонансную частоту.

При выборе фильтров необходимо учитывать, что фильтр должен обеспечить максимально крутые спады и максимально плоскую вершину, а так же он должен иметь высокую добротность и простую настройку.

В качестве полосовых фильтров используются фильтры на основе конверторов полного сопротивления (рис. 6.1) [16].

Данный полосовой фильтр описывается следующей передаточной функцией:

, (6.1)

где - коэффициент передачи на резонансной частоте;

*- добротность

Рисунок 6.1 – Полосовой фильтр на основе конверторов полного сопротивления

; (6.2)

р – оператор Лапласа;

*- резонансная частота.

Несмотря на наличие пяти резисторов и двух конденсаторов настройка схемы сводится к операциям установки: коэффициента передачи – резистором R2, резонансной частоты *- резистором R4 и добротности *- резистором R7. Так же эта схема позволяет построить фильтры с высокой добротностью *, поскольку она не критична к отклонениям значений элементов от номинальных, проста в настройке и не требует применения элементов с большим диапазоном номиналов. Эти преимущества достигаются за счет использования двух операционных усилителей. Однако подключение еще одного операционного усилителя может привести к увеличению дрейфа и шумов в прецизионных схемах.

Поскольку в устройстве передачи данных используется адаптивный эквалайзер, который компенсирует искажения, вносимые полосовым фильтром, и увеличение количества каскадов ведет к увеличению шумов, то достаточно использовать однокаскадный фильтр, настроенный на несущую частоту диапазона.

Фильтры, используемые в основных частотных диапазонах передачи, должны настраиваться на ширину полосы пропускания, равной ширине диапазона (), и несущие, fн1=671.6кГц и fн2=854.6кГц. Данные фильтры должны иметь амплитудно-частотные характеристики показанные: для fн1 – рис. 6.2, для fн2 – рис. 6.3.

Рисунок 6.2 – Амплитудно-частотная характеристика полосового фильтра (f н1=671.6 кГц)

Рисунок 6.3 – Амплитудно-частотная характеристика полосового фильтра (f н2=854.6 кГц)

6.2 Описание адаптивного эквалайзера

Адаптивный эквалайзер компенсирует нелинейность амплитудной и фазочастотной характеристик используемого канала связи, а так же компенсирует изменения вносимые полосовыми фильтрами и устройством присоединения, которые находятся на выходе передающей части устройства. Сам эквалайзер состоит из линии задержки с отводами и набора управляемых усилителей с изменяемым коэффициентом усиления (рис.6.4). Адаптивность эквалайзера заключается в его способности подстраиваться под изменяющиеся параметры в течение сеанса связи. Для этого сигнал управления, который формируется в приемной части устройства передачи данных, подается на усилители с переменными коэффициентами усиления. В зависимости от изменений параметров и помеховой обстановки линии происходит усиление или ослабление сигнала таким образом, что бы скомпенсировать искажения сигнала, вносимые линией [18].

Рисунок 6.4 – Структурная схема адаптивного эквалайзера

6.3 Описание эхокомпенсатора

Поскольку система связи должна контролировать состояние линии, то на этапе установления соединения устройство связи посылает определенный зондирующий сигнал и определяет параметры эхоотражения: время запаздывания, амплитудные и фазовые искажения, мощность отраженного сигнала. В процессе сеанса связи эхокомпенсатор модема вычитает из принимаемого входного сигнала свой собственный выходной E’(t), скорректированный в соответствии с полученными параметрами эхоотражения. Функцию создания копии эхо-сигнала выполняет линия задержки с отводами, схема которой приведена на рис. 6.5, где Z – линия задержки, У1…УN – усилители с регулируемым коэффициентом усиления, ДС – дифсистема [2].

Рисунок 6.5 – Структурная схема эхокомпенсатора

Дифсистема в данном случае выполняет функцию разделения сигналов по направлениям. Схема дифференциальной системы приведена на рис.6.6.

Рисунок 6.6 – Схема мостовой трансформаторной дифференциальной системы

6.4 Описание устройства присоединения

Устройством присоединения обычно является полосовой фильтр, включающий в себя конденсаторы присоединения, и выполняющий следующие функции:

- отсекает промчастоту и пропускает только полезный высокочастотный сигнал;

- служит заградительным устройством для высокого напряжения;

- служит согласующим элементом между высокочастотным кабелем и линейным трактом, так как волновое сопротивление кабеля не равно характеристическому сопротивлению линейного тракта [6].

Существует несколько схем устройств присоединения (рис 6.7 – 6.10).

Рисунок 6.7 – Принципиальная схема устройства присоединения построенного на Т-образном фильтре

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 
 16  17  18 


Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы