Устройства передачи информации по сети электропитания
Для обмена данными между компьютером и периферийным устройством (ПУ) в компьютере предусмотрен внешний интерфейс, то есть соединения между компьютером и периферийным устройством, а так же набор правил обмена информацией. Интерфейс реализуется со стороны компьютера совокупностью аппаратных и программных средств: контроллером ПУ и специальной программой, управляющей этим контроллером – драйвером
ПУ. Периферийное устройство использует внешний интерфейс компьютера не только для приема информации, но и для передачи информации в компьютер, то есть обмен данными по внешнему интерфейсу, как правило, является двунаправленным. Программа, выполняемая процессором, может обмениваться данными с помощью команд ввода/вывода с любыми модулями, подключенными к внутренней шине компьютера, в том числе с контроллерами ПУ. Контроллеры ПУ принимают команды и данные от процессора в свой внутренний буфер (регистр или порт), затем выполняют необходимые преобразования этих данных и команд в соответствии с форматами, понятными периферийному устройству, и выдают их на внешний интерфейс.
Ethernet – самая распространенная на сегодняшний день технология локальных сетей. В широком смысле Ethernet – это целое семейство технологий, включающее различные форменные и стандартные варианты. Почти все виды технологий Ethernet используют один и тот же метод разделения среды передачи данных – метод случайного доступа CDMA/CD, который определяет облик технологии в целом. Важным явлением в сетях Ethernet является коллизия – ситуация, когда две станции одновременно пытаются передать кадр данных по общей среде. Наличие коллизий – это неотъемлемое свойство сетей Ethernet, являющееся следствием принятого случайного метода доступа. Возможность четкого распознавания коллизий обусловлена правильным выбором параметров сети, в частности соблюдением соотношения между минимальной длиной кадра и максимально возможным диаметром сети. На характеристики производительности сети большое значение оказывает коэффициент использования сети, который отражает загруженность сети. При значениях этого коэффициента свыше 50% полезная пропускная способность резко падает: из-за роста интенсивности коллизий, а так же увеличения времени ожидания доступа к среде. Максимально возможная пропускная способность сегмента Ethernet в кадрах в секунду достигается при передаче кадров минимальной длины и составляет 14880 кадр/с. При этом полезная пропускная способность сети составляет всего 5,48 Мбит/с, что лишь немного более половины от номинальной пропускной способности – 10 Мбит/с. Технология Ethernet поддерживает 4 разных типа кадров, которые имеют общий формат адресов узлов. Существуют формальные признаки, по которым сетевые адаптеры автоматически распознают тип кадра. В зависимости от типа физической среды существуют различные спецификации: 10Base-5, 10Base-2, 10Base-Т, FOIRL, 10Base-FL, 10Base-FB. Для каждой спецификации определяются тип кабеля, максимальные длины непрерывных отрезков кабеля, а так же правила использования повторителей для увеличения диаметра сети: правило «5-4-3» для коаксиальных вариантов сети, и правило «четырех хабов» для витой пары и оптоволокна.
Технология Token Ring развивается в основном компанией IBM. В сетях Token Ring используется маркерный метод доступа, который гарантирует каждой станции получение доступа к разделяемому кольцу в течение оборота маркера. Метод доступа основан на приоритетах: от 0 до 7. Станция сама определяет приоритет текущего кадра и может захватить кольцо только в том случае, когда в кольце нет более приоритетных кадров. Сети Token Ring работают на двух скоростях 4 и 16 Мбит/с и могут использовать в качестве физической среды экранированную витую пару, неэкранированную витую пару, а так же оптоволокно. Максимальное количество станций в кольце – 260, а максимальная длина кольца – 4 км. Технология Token Ring обладает элементами отказоустойчивости. За счет обратной связи кольца одна из станций - активный монитор – непрерывно контролирует наличие маркера, а так же время оборота маркера и кадров данных. При некорректной работе кольца запускается процедура его повторной инициализации, а если она не помогает, то для локализации неисправного участка кабеля или неисправной станции используется процедура beaconing. В сети Token Ring станции в кольцо объединяют с помощью концентраторов (MSAU). Пассивный концентратор выполняет роль кроссовой панели, которая соединяет выход предыдущей станции в кольце со входом последующей. Максимальное расстояние от станций до MSAU – 100 м для STP и 45 м для UTP. Активный монитор выполняет в кольце так же роль повторителя – он ресинхронизирует сигналы, проходящие по кольцу. Кольцо может быть построено на основе активного концентратора MSAU, который в этом случае называется повторителем. Сеть Token Ring может строиться на основе нескольких колец, разделенных мостами, маршрутизирующими кадры по принципу «от источника», для чего в кадр Token Ring добавляется специальное поле с маршрутом прохождения колец [1].
В основе построения беспроводных локальных вычислительных сетей лежит технология Ethernet. На физическом уровне для беспроводных локальных сетей определены четыре различные способа передачи данных: инфракрасное излучение, лазеры, радиопередачи в узком спектре (одночастотные передачи) и радиопередачи в рассеянном спектре. Последние два способа имеют общее название – радиопередача в размытом спектре. При этом используются частоты в диапазоне 2.4 – 2.4835 ГГц. Этот диапазон является безлицензионным. Технология обеспечивает возможность передачи со скоростью 1 – 16 Мбит/с. Суть радиопередачи в узком спектре заключается в модуляции исходных данных при помощи широкополосного сигнала. Приемнику известен модулирующий сигнал, поэтому он может восстановить исходный сигнал. Первоначально многие выпускаемые продукты были рассчитаны на работу в диапазоне от 902 – 928 МГц. В настоящее время используется диапазон на частоте 3.4 ГГц. Таким образом, данный способ напоминает вещание радиостанции, при котором прямая видимость не обязательна. Площадь вещания при этом способе составляет до 46500 м2. Сигнал высокой частоты, который используется, не проникает через металлические или железобетонные преграды. При радиопередаче в рассеянном спектре сигналы передаются в некоторой полосе частот, что позволяет избежать некоторых проблем связи, которые присущи одночастотной передаче. В данном способе предусмотрена передача коротких серий данных на одной частоте, затем на другой и т. д. Поскольку каждый пользователь работает со своей уникальной последовательностью частот, в одном диапазоне работает несколько пользователей одновременно. Благодаря этому в этом способе более рационально используется доступный диапазон частот. Последовательность скачков должна иметь не менее 75 различных частот, при этом длительность передачи на конкретной частоте должна длиться не более 400 мкс. При наличии помех, на какой либо частоте передача повторяется на следующей частоте. Скорость передачи при использовании радиопередачи в рассеянном спектре 250 кбит/с – 2 Мбит/с. Если скорость передачи 2 Мбит/с, то дальность передачи достигает 3,2 км. Все инфракрасные беспроводные сети используют для передачи данных инфракрасные лучи. В подобных системах необходимо генерировать очень сильный сигнал, так как в противном случае значительное влияние будет оказывать отражение поверхностей. Этот способ позволяет передавать сигналы с большой скоростью, поскольку инфракрасный свет имеет широкий диапазон частот. Инфракрасные сети способны нормально функционировать на скорости 10 Мбит/с. Лазерная технология требует прямой видимости между передатчиком и приемником. Если каким либо причинам луч будет прерван, то это прервет и саму передачу.
Другие рефераты на тему «Коммуникации, связь и радиоэлектроника»:
Поиск рефератов
Последние рефераты раздела
- Микроконтроллер системы управления
- Разработка алгоритмического и программного обеспечения стандарта IEEE 1500 для тестирования гибкой автоматизированной системы в пакете кристаллов
- Разработка базы данных для информатизации деятельности предприятия малого бизнеса Delphi 7.0
- Разработка детектора высокочастотного излучения
- Разработка микропроцессорного устройства для проверки и диагностики двигателя внутреннего сгорания автомобиля
- Разработка микшерного пульта
- Математические основы теории систем