Методы компьютерных вычислений и их приложение к физическим задачам
3) погрешность метода – основана на дискретном характере любого численного алгоритма. Это значит, что вместо точного решения исходной задачи метод находит решение другой задачи, близкого в каком-то смысле (например по норме банахова пространства) к искомому. Погрешность метода – основная характеристика любого численного алгоритма. Погрешность метода должна быть в 2-5 раз меньше неустрани
мой погрешности.
4) погрешность округления – связана с использованием в вычислительных машинах чисел с конечной точностью представления.
Вот иллюстрация этих определений. Пусть имеется реальный маятник, совершающий затухающие колебания, начинающий движение в момент t = t0. Требуется найти угол отклонения φ от вертикали в момент t1. Движение маятника мы можем описать следующим дифференциальным уравнением:
,
где l – длина маятника, g – ускорение силы тяжести, μ – коэффициент трения.
Как только принимается такое описание задачи, решение уже приобретает неустранимую погрешность, в частности потому, что реальное трение зависит от скорости не совсем линейно (погрешность модели). Кроме того, воспроизведя реальный эксперимент, мы зададим l, g (в известной точке планеты), μ с некоторой точностью, и получим набор значений с погрешностью, которую можем оценить из анализа статистики некоторого числа однотипных опытов (погрешность исходных данных). Взятое в модели дифференциальное уравнение нельзя решить в явном виде, для его решения требуется применить какой-либо численный метод, имеющий заранее известную погрешность, которая должна быть меньше неустранимой погрешности. После совершения вычислений мы получим значения с погрешностью большей, нежели погрешность метода, так как к ней прибавится погрешность округления.
Рассмотрим правила расчета погрешности округления:
1) Сложение и вычитание приближенных чисел
Введем в рассмотрение два числа a и b, называемых приближенными, то есть это есть оценка точных значений A и B, известных с абсолютными погрешностями ±εa и ±εb. Знаки этих погрешностей нам неизвестны, следовательно для обеспечения достоверности конечного результата мы должны взять наихудший случай, когда погрешности складываются. Таким образом формулируются следующие правила:
1. Абсолютная погрешность суммы приближенных чисел равна сумме абсолютных погрешностей слагаемых.
2. Абсолютная погрешность разности приближенных чисел равна сумме абсолютных погрешностей слагаемых.
Относительной погрешностью приближенного числа a будет являться величина . По этому же правилу определим относительную погрешность суммы приближенных чисел a и b как . При этом можно показать, что
3. Относительная погрешность суммы слагаемых одного знака заключена между наименьшей и наибольшей относительными погрешностями слагаемых: .
4. Для разности двух приближенных чисел одного знака величина относительной погрешности может быть сколь угодно большой.
2) Умножение и деление приближенных чисел
Очевидно, что приближенное число
. Тогда для произведения
.
Если пренебречь последним малым слагаемым в скобках, то можно сформулировать следующее правило:
1. Относительная погрешность произведения приближенных чисел равна сумме относительных погрешностей множителей .
Так как деление на число b равнозначно умножению на 1/b, то справедливо утверждение:
2. Относительная погрешность частного приближенных чисел равна сумме относительных погрешностей делимого и делителя.
Следовательно, при умножении и делении приближенных чисел необходимо принимать во внимание количество значащих цифр, характеризующих относительную точность числа, а не количество десятичных знаков, обуславливающих его абсолютную погрешность.
Совершенно очевидно, что при большом количестве действий такого сорта правила нельзя считать удовлетворительными, так как погрешности будут иметь разные знаки и компенсировать друг друга. Статистическая оценка показывает, что при N одинаковых действиях среднее значение суммарной ошибки больше единичной в раз, если нет систематических причин для накопления погрешности. Систематические причины возникают, если, например в алгоритме вычитаются близкие по величине числа.
При любых расчетах надо устанавливать такую точность вычислений, чтобы погрешность округления была существенно меньше всех остальных погрешностей.
3. Краткое введение в используемые программные средства
Традиционные языки высокоуровневого программирования. В большинстве практических случаев моделирование или численный расчет предполагает использование готового алгоритма, который необходимым образом модифицируется для конкретной задачи. В настоящее время существуют обширные фонды алгоритмов и программ, ориентированных на классические языки программирования, такие как Фортран, Си и Паскаль. Наиболее мощные математические библиотеки были разработаны для самого старого языка программирования из вышеперечисленных – Фортрана. Однако во многих случаях, обладая соответствующей квалификацией, легче написать программу, отталкиваясь от первых принципов, нежели тестировать и исправлять, или переводить на другой язык программирования незнакомый текст.
Другое направление, которое в настоящее время особенно популярно – использование мощных математических пакетов для численных и аналитических расчетов.
Mathcad.
Разрабатывается компанией MathSoft Inc. Является наиболее легкой для освоения системой математических расчетов. Принята концепция «активного документа», то есть все вычисления записываются в традиционной математической нотации (с использованием значков интеграла, суммы и др.), а после введения знака равенства или другого запускающего символа появляется рассчитанное значение. Основной недостаток – слишком мал набор основных функций и очень низкое быстродействие.
MathLab.
Система MATLAB (MATrix LABoratory) разрабатывается фирмой MathWorks. Эта система создана для работы в среде Windows и представляет собой интерактивную среду для вычислений и моделирования, причем она может работать как в режиме непосредственных вычислений (очень напоминает режим «командной строки»), так и в режиме интерпретации написанных программ. Сильная сторона системы – виртуозная работа с матрицами и векторами. Численное значение или аналитическая формула, а также сообщения системы выводится на экран в виде списка. Помимо обычных алгебраических вычислений система имеет огромный набор встроенных функций, а также имеется возможность создавать пользовательские функции. В системе очень качественно реализовано построение двух и трехмерных изображений, в том числе динамически изменяющихся. Кроме того, имеется библиотека, которая обеспечивает удобное управление исполнением программ. И это только базовый набор, который обычно расширяется многочисленными дополнениями – например языком Simulink моделирования нелинейных динамических систем. Основное назначение – технические расчеты.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах