Методы компьютерных вычислений и их приложение к физическим задачам

|xk+1 – xk| ≤ ξ . (1)

Данный метод является одним из самых медленных для поиска минимума. Основное достоинство данного алгоритма – возможность использования в программах управления экспериментальными исследованиями, когда значения функции f(x) последовательно измеряются с шагом h ≥ hmin.

<

b>Метод золотого сечения.

Пусть f(x) задана и кусочно-непрерывна на [xL, xR], и имеет на этом отрезке только один локальный минимум. Золотое сечение, о котором упоминал ещё Евклид, состоит в разбиении интервала [xL, xR] точкой x1 на две части таким образом, что отношение длины всего отрезка к его большей части равно отношению большей части к меньшей:

. (2)

Таким образом, возьмем на отрезке две точки x1 и x2, симметрично относительно границ делящие исходный отрезок в отношении золотого сечения:

,

,

где коэффициент .

Если f(x1) < f(x2), мы должны сузить отрезок справа, т.е. новое значение xR = x2, в противном случае xL = x1. Оставшаяся внутри нового отрезка точка является первым приближением к минимуму и делит этот отрезок в отношении золотого сечения. Таким образом, на каждой итерации приближения к минимуму (см. рисунок) нам нужно ставить только одну точку (x1 или x2), в которой считать значение функции и сравнивать его с предыдущим. Условием выхода из итерационного процесса будет, подобно предыдущему случаю, условие |x2 – x1| ≤ ξ.

Метод отличается высокой скоростью сходимости, обычно изысканной компактностью программной реализации и всегда находит точку, минимальную на заданном интервале.

Метод парабол.

Пусть f(x) имеет первую и вторую производную. Разложим f(x) в ряд Тейлора в некоторой точке xk, ограничиваясь при этом тремя членами разложения:

. (3)

Иными словами, аппроксимируем нашу функцию в точке xk параболой. Для этой параболы можно аналитически вычислить положение экстремума как корень уравнения первой производной от (3): . Пусть минимум аппроксимирующей параболы находится в точке xk+1. Тогда вычислив значение функции f(xk+1), мы получаем новую точку приближения к минимуму.

Обычно в практических реализациях данного метода не используют аналитический вид первой и второй производных f(x). Их заменяют конечно-разностными аппроксимациями. Наиболее часто берут симметричные разности с постоянным шагом h:

;

.

Это эквивалентно аппроксимации функции параболой, проходящей через три близкие точки xk+h, xk, xk–h. Окончательное выражение, по которому можно строить итерационный процесс, таково:

. (4)

Данный метод отличается от вышеизложенных высокой скоростью сходимости. Вблизи экстремума, вплоть до расстояний ~h2, сходимость практически не отличается от квадратичной. Однако алгоритм требует постоянного контроля сходимости. Например, итерационный процесс будет сходиться к минимуму, если

1) знаменатель формулы (4) должен быть >0. Если это не так, нужно сделать шаг в обратном направлении, причем достаточно большой. Обычно в итерационном процессе полагают . Иногда ради упрощения расчетов полагают , однако это существенно уменьшает скорость сходимости.

2) . Если это не так, то от xk следует сделать шаг с τ = ½. Если и при этом условие убывания не выполнено, уменьшают τ и вновь делают шаг.

Численные методы поиска минимума функции нескольких переменных.

Будем рассматривать методы поиска минимума в многомерных задачах на примере функции двух переменных f(x, y), так как эти методы легко аппроксимировать на случай трех и более измерений. Все эффективные методы поиска минимума сводятся к построению траекторий, вдоль которых функция убывает. Разные методы отличаются способами построения таких траекторий, так как метод, приспособленный к одному типу рельефа, может оказаться плохим для рельефа другого типа. Различают следующие типы рельефа:

1) Котловинный (гладкая функция)

2) Истинный овраг

3) Разрешимый овраг

4) Неупорядоченный

Метод координатного спуска.

Пусть требуется найти минимум f(x, y). Выберем нулевое приближение (x0, y0). Рассмотрим функцию одной переменной f(x, y0) и найдем ее минимум, используя любой из рассмотренных выше способов. Пусть этот минимум оказался в точке (x1, y0). Теперь точно так же будем искать минимум функции одной переменной f(x1, y). Этот минимум окажется в точке (x1, y1). Одна итерация спусков завершена. Будем повторять циклы, постепенно приближаясь ко дну котловины, пока не выполнится условие .

Сходимость метода зависит от вида функции и выбора нулевого приближения. Вблизи невырожденного минимума гладкой функции спуск по координатам линейно сходится к минимуму. Если линии уровня образуют истинный овраг, возможен случай, когда спуск по одной координате приводит на дно оврага, а любое движение по следующей координате ведет на подъем. Процесс координатного спуска в данном случае не сходится к минимуму.

При попадании траектории спуска в разрешимый овраг сходимость становится чрезвычайно медленной. В физических задачах овражный рельеф указывает на то, что не учтена какая-то закономерность, определяющая связь между переменными. Явный учет этой закономерности облегчает использование численных методов.

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15 


Другие рефераты на тему «Математика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы