Методы компьютерных вычислений и их приложение к физическим задачам
.
Правое нижнее значение в треугольнике – искомое уточненное значение интеграла.
Метод Симпсона.
Подинтегральная функция f(x) заменяется интерполяционным полиномом второй степени P(x) – параболой, проходящей через три узла, например, как показано на рисунке ((1) – функция, (2) – полином).
6 height=203 src="images/referats/7507/image045.png" align=left>
Рассмотрим два шага интегрирования (h = const = xi+1 – xi), то есть три узла x0, x1, x2, через которые проведем параболу, воспользовавшись уравнением Ньютона:
.
Пусть z = x – x0,
тогда
Теперь, воспользовавшись полученным соотношением, сосчитаем интеграл по данному интервалу:
В итоге .
Для равномерной сетки и четного числа шагов n формула Симпсона принимает вид:
Здесь , а в предположении непрерывности четвертой производной подинтегральной функции.
Блок-схема алгоритма метода Симпсона.
Методы Монте-Карло.
1) одномерная случайная величина – статистический вариант метода прямоугольников.
В качестве текущего узла xi берется случайное число, равномерно распределенное на интервале интегрирования [a, b].
Проведя N вычислений, значение интеграла определим по следующей формуле:
.
Для R можно утверждать хотя бы ~.
2) двумерная случайная величина – оценка площадей.
Рассматриваются две равномерно распределенных случайных величины xi и yi, которые можно рассматривать как координаты точки в двумерном пространстве. За приближенное значение интеграла принимается количества точек S, попавших под кривую y = f(x), к общему числу испытаний N, т.е.
.
И первый, и второй случай легко обобщаются на кратные интегралы.
5. Оценка апостериорной погрешности
Мы записывали априорные оценки главного члена погрешности в виде R0 = Ahp, (1) где A – коэффициент, зависящий от метода интегрирования и вида подинтегральной функции; h – шаг интегрирования, p – порядок метода. Такого сорта оценку можно применить не только к методам интегрирования, но и ко многим другим численным алгоритмам.
Первая формула Рунге.
Пусть w – точное значение, к которому должен прийти численный метод (мы его не знаем). Результат численного расчета дает нам величину wh такую, что . (2)
Теперь вычислим ту же величину w с шагом kh, где константа k может быть как больше, так и меньше единицы. Коэффициент A будет одинаковый, так как вычисление осуществляется одним и тем же методом. Получаем . (3)
Приравняем правые части выражений (2) и (3) и пренебрежем бесконечно малыми величинами одинакового порядка малости.
.
Отсюда, учитывая (1), получим . (4) Эта формула, выражающая апостериорную оценку главного члена погрешности величины w путем двойного просчета с разным шагом, носит название первой формулы Рунге. При уменьшении шага главный член погрешности будет стремиться к полной погрешности R.
Вторая формула Рунге.
Так как модуль и знак апостериорной погрешности из формулы (4) известны, можно уточнить искомое значение . Это вторая формула Рунге. Однако теперь погрешность wcorr не определена, известно лишь, что она по модулю меньше R0.
Алгоритм Эйткена.
Способ оценки погрешности для случая, когда порядок метода p неизвестен. Более того, алгоритм позволяет опытным путем определить и порядок метода. Для этого в третий раз вычислим значение величины w с шагом k2h:
. (5)
Приравняем правые части выражений (5) и (3): . Отсюда:
. Подставим сюда значение R0 из (4):
.
Из этой формулы определяем знаменатель для (4). Кроме того, определяем порядок
.
Для правильно реализованных алгоритмов методов априорных и апостериорных порядки должны получиться совпадающими. Программная реализация формул Рунге позволяет вычислить определенные интегралы с заданной точностью, когда выбор необходимого числа разбиений интервала интегрирования осуществляется автоматически. Пример – уже рассмотренная ранее формула Ромберга.
6. Численное дифференцирование
Методы численного дифференцирования применяются, если исходную функцию f(x) трудно или невозможно продифференцировать аналитически. Например, эта функция может быть задана таблично. Задача численного дифференцирования – выбрать легко вычисляемую функцию (обычно полином) , для которой приближенно полагают .
Численное дифференцирование – некорректная задача, так как отсутствует устойчивость решения. При численном дифференцировании приходится вычитать друг из друга близкие значения функции. Это приводит к уничтожению первых значащих цифр, т.е. к потере части достоверных знаков числа. А так как значения функции обычно известны с определенной погрешностью, то все значащие цифры могут быть потеряны. На графике кривая (1) соответствует уменьшению погрешности дифференцирования при уменьшении шага; кривая (2) представляет собой неограниченно возрастающий (осциллирующий) вклад неустранимой погрешности исходных данных – значений функции y(x). Критерий выхода за оптимальный шаг при его уменьшении – «разболтка» решения: зависимость результатов вычислений становится нерегулярно зависящей от величины шага.
Другие рефераты на тему «Математика»:
Поиск рефератов
Последние рефераты раздела
- Анализ надёжности и резервирование технической системы
- Алгоритм решения Диофантовых уравнений
- Алгебраическое доказательство теоремы Пифагора
- Алгоритм муравья
- Векторная алгебра и аналитическая геометрия
- Зарождение и создание теории действительного числа
- Вероятностные процессы и математическая статистика в автоматизированных системах