Математические модели в расчетах на ЭВМ

РЕФЕРАТ

Данная курсовая работа содержит 30 страниц, 16 рисунков, 2 таблицы, 3 источника литературы.

Целью данной курсовой работы является построение АЧХ, КЧХ, ФЧХ (моделирование в частотной области) и переходный процесс (моделирование во временной области).

В результате выполненной курсовой работы были получены ФЧХ, КЧХ, ФЧХ и переходный процесс.

СТРУКТУРНАЯ СХЕМ

А, ПЕРЕДАТОЧНАЯ ФУНКЦИЯ, МАТЕМАТИЧЕСКАЯ МОДЕЛЬ, ЧАСТОТНЫЕ ХАРАКТЕРИСТИКИ, КРИВАЯ ПЕРЕХОДНОГО ПРОЦЕССА.

СОДЕРЖАНИЕ

Введение

1. Моделирование в частотной области

2. Моделирование во временной области

Заключение

Перечень ссылок

ВВЕДЕНИЕ

Часто при решении задач автоматизации приходится прибегать к моделированию. Это связанно с тем, что большинство технологических объектов являются сложными и исследовать реакцию этих объектов на те или иные объекты является достаточно дорогой операцией.

Различают три основных вида модели:

— алгоритмическая

— физическая

— математическая

Алгоритмическая модель - это некоторая последовательность действий и операций.

Физическая модель - это точная копия технологического объекта в увеличенном или уменьшенном масштабе.

Математическая модель может быть представлена в виде алгебраических или систем алгебраических, дифференциальных или систем дифференциальных уравнений.

В виду удобства работы наибольшее распространение при исследовании получили математические модели.

В данной работе произведем моделирование соединения звеньев в частотной области.

1 МОДЕЛИРОВАНИЕ В ЧАСТОТНОЙ ОБЛАСТИ

Все технологические объекты являются достаточно сложными объектами и они описываются дифференциальными уравнениями высоких порядков или системой дифференциальных уравнений. Для исследования объекта в частотной области достаточно построить соответствующие частотные характеристики:

- амплитудно-частотная характеристика показывает зависимость амплитуды сигнала на выходе объекта от частоты сигнала на его входе при неизменной амплитуде входного сигнала;

- фазочастотная характеристика показывает на сколько (на какой угол) выходной сигнал опережает или отстает от входного сигнала при изменении частоты входного сигнала от 0 до ∞;

- комплексная частотная характеристика или амплитудно-фазная характеристика показывает, как изменяется в комплексной плоскости модуль и фаза исследуемого объекта при изменении частоты от 0 до ∞.

Проводим моделирование в частотной области соединения звеньев представленных в задании на рисунке 1.1

При известных передаточных функциях:

Введем формулы для вычисления частотных функций, амплитуды и фазы данных звеньев:

Выполним преобразования структурной схемы. При преобразовании структурных звеньев необходимо будет находить значения передаточной и частотой (производим замену p=jω) функций, общей вещественной и общей мнимой составляющих, модуля и фазы полученных звеньев.

Для параллельного соединения эти значения рассчитываются по формулам (1.1)-(1.6):

(1.1)

где - передаточная функция i-того звена.

(1.2)

где (jω) - частотная функция i-того звена.

(1.3)

где - вещественная составляющая i-того звена.

(1.4)

где - мнимая составляющая i-того звена.

(1.5)

. (1.6)

При последовательном соединении значения будут рассчитываться по формулам (1.7)-(1.12):

(1.7)

где - передаточная функция i-того звена.

(1.8)

где (jω) - частотная функция i-того звена.

(1.9)

где - модуль i- того звена.

(1.10)

где - фаза i- того звена.

(1.11)

(1.12)

Выполним эквивалентные преобразования заданных соединений элементов. Заменим параллельное соединение звеньев , одним эквивалентным звеном (рисунок 1.2).

Y

Страница:  1  2  3  4  5  6 


Другие рефераты на тему «Программирование, компьютеры и кибернетика»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы