Кинематический и силовой расчет механизма

Заданный механизм состоит из ведущего звена 1 со стойкой 4 и двухповодковой группы (звенья 2 - 3). Звено 1 вращается, совершая полный оборот, и называется кривошипом. Звено 3 совершает вращательное движение с неполным оборотом и называется коромыслом. Звено 2 совершает сложное движение и образует кинематические пары с кривошипом 1 и коромыслом 3. Такое звено называется шатуном. Все кинематиче

ские пары вращательные V класса.

Таким образом, заданный механизм является плоским с одной степенью свободы и называется кривошипно-коромысловым.

Схему такого механизма можно использовать для резки пруткового материала.

2 Кинематический анализ механизма

Основными задачами кинематического исследования механизмов являются:

· определение положений звеньев

· определение скоростей и ускорений точек;

· определение угловых скоростей и ускорений звеньев.

Ведущее звено - кривошип и считаем его угловую скорость , рад/с постоянной. Исследования проводим графоаналитическими методами. Так, положения звеньев определяем методом засечек при построении плана механизма, скорости и ускорения различных точек механизма находим с помощью построения планов скоростей и ускорений.

2.1 Построение планов механизма

Кинематическую схему строим методом засечек.

Выбираем масштаб построения с таким расчетом, чтобы планы положений механизма заняли примерно 1/5…1/4 часть площади формата А1 или полную площадь формата А4.

Выбираем точку О1. Проводим окружность радиуса . Длину отрезка, изображающего звено О1А выбираем произвольно из соображения размещения схемы механизма на листе выбранного формата.

O1A = 230 мм – заданная длина кривошипа.

= 46 мм - длина кривошипа на чертеже.

Вычисляем масштаб построения ;

= 0,23 / 46 = 0,005 м/мм

В соответствии с выбранным масштабом определяем длины всех линейных величин.

Вычисляем длину отрезка АВ: = 0,575 / 0,005 = 115 мм.

Вычисляем длину отрезка О2В: = 0,92 / 0,005 = 184 мм.

Вычисляем длину отрезка АD: = 0,16 / 0,005 = 32 мм.

Строим план механизма в заданном положении (φ = 2250.) Заданное положение механизма, вычерчиваем основными линиями. (Остальные положения механизма вычерчиваем тонкими сплошными линиями). Вычерчиваем начальное звено О1А в заданном положении. Из точки A делаем засечку радиусом . Из точки О2 делаем засечку радиусом . Находим место пересечения засечек – получаем положение точки B. Находим положение точки D.

Разбиваем окружность на восемь равных частей. Строим 8 положений механизма, чтобы представить себе как он работает и какую траекторию описывает точка D. Последовательно помещаем шарнир А в равноотстоящие положения 2, 3…7, 8 в направлении вращения кривошипа, методом засечек определяем соответствующие положения точек B и D кривошипа.

Для получения траектории точки D необходимо последовательно соединить плавной кривой все восемь положений точки D с помощью лекал. Находим крайние положения механизма (M1N1ТВ1 и M2N2ТВ2).

2.2 Построение планов скоростей механизма

Кривошип (1) вращается в направлении, указанном стрелкой с постоянной угловой скоростью .

Угловая скорость вращения кривошипа

= = 25,1 рад/с

На чертеже выбираем точку – полюс плана скоростей. Обозначим ее . Скорость точки О1 равна нулю, т.е. отрезок на плане скоростей будет равен нулю – точка совпадет с точкой .

Вектор скорости точки А направлен перпендикулярно звену 1 в сторону направления вращения.

= 25,1 ∙ 0,23 = 5,8 м/с

Вектор скорости точки S1 направлен перпендикулярно звену 1 в сторону направления вращения.

= 25,1 ∙ 0,115 = 2,9 м/с

Из полюса (точки ) построим вектор , соответствующий вектору скорости

Вектор начинается в точке , направлен перпендикулярно кривошипу.

Конец вектора обозначим точкой .

После того, как длина вектора на чертеже определена, вычисляем масштаб построения планов скоростей:

.

Вектор на плане, соответствующий скорости центра тяжести первого звена - совпадет по направлению с вектором , его длина будет зависеть от масштаба построения:

== 29 мм

Переходим к анализу линейных скоростей точек структурной группы (звенья 2, 3).

Звено 2 совершает плоскопараллельное движение, звено 3 вращательное.

Для нахождения скорости точки B составляем векторное уравнение:

Точка B движется по окружности с центром в О2.

Векторное уравнение можно решить, если в нем не более двух неизвестных.

Вектор, входящий в уравнение

Направление вектора

- перпендикулярна О2В

Модуль вектора (его численное значение) м/с

?

вычислено

?

Страница:  1  2  3  4  5  6  7 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы