Расчет и подбор теплоутилизационного контура
9) Для tп и tmax по графикам определяем теплонапряженность абсолютно черной поверхности qs:
Таблица 8.
q, 0C |
200 |
400 |
600 |
qs, Вт/м2 td> |
192*103 |
182*103 |
130*103 |
Определяем теплонапряженность при q = 4250С: qs = 177796,9 Вт/м2.
Таким образом, полный тепловой поток, внесенный в топку:
Q = B*`Qрн hт*103 = 0,09*49169*0,95*103 = 4203949,5 Вт.
Эквивалентная абсолютно черной поверхность равна
Hs = Q/qs = 4203949,5/177796,9 = 23,64 м2.
10) Принимаем степень экранирования кладки y = 0,45; для a=1,05 примем Нs/HL = 0.78.
Эквивалентная плоская поверхность:
Нл = Нs/ (Нs/HL) = 23.64/0.78 = 30.31 м2.
Диаметр радиантных труб dр= 0,152м, диаметр конвекционных труб dк= 0,114м.
Принимаем однорядное размещение труб и шаг между ними S = 2*dр = 0,304м.
Для этих значений фактор формы К= 0,87.
11) Величина заэкранированности кладки:
Н = Нп/К = 30,31/0,87 = 34,84 м2.
12) Поверхность нагрева радиантных труб:
Fрад= 3,14*Н/2 = 3,14*34,84/2 = 54,7 м2.
Таким образом, выбираем печь Б1 54/6.
Характеристика печи
Таблица 9
Шифр |
|
Поверхность камеры радиации, м2 |
54,0 |
Поверхность камеры конвекции, м2 |
54,0 |
Рабочая длина печи, м |
6,0 |
Ширина камеры радиации, м |
1,2 |
Способ сжигания топлива |
Беспламенное горение |
Длина lпол= l-0,8 = 6-0,8 = 5,2.
Число труб в камере радиации: nр = 54/3,14*0,152*5,2 = 21,76.
Теплонапряженность радиантных труб: qр = 2387431/54 = 44211,69 Вт/м2.
Число конвективных труб: nк = 54/3,14*0,114*5,2 = 29,01.
Располагаем трубы в шахматном порядке по 3 в одном горизонтальном ряду, шаг между трубами S = 1,7*dк = 1,7*0,114 = 0,19м.
Рис. 3. Принципиальная схема рассматриваемой технологической печи.
13) Средняя разность температур:
Dtср = [(tn-tk)-(tух-t1)]/ln[(tn-tk)/(tух-t1)]
Dtср = [(916,4-260,4)-(450-151)]/ln[(916,4-260,4)/(450-151)] = 454.20C
14) Коэффициент теплопередачи:
К = Qконв/Dtср*F = 795810/454.2*54 = 32,46 Вт/м2*К.
15) Теплонапряженность поверхности конвективных труб:
qk= Qконв /F = 795810/54 = 14737.2 Вт/м2.
Гидравлический расчет змеевика печи
Для обеспечения нормальной работы трубчатой печи необходимо обосновано выбрать скорость движения потока сырья через змеевик. При увеличении скорости движения сырья в трубчатой печи повышается коэффициент теплоотдачи от стенок труб к нагреваемому сырью, что способствует снижению температуры стенок, а следовательно, уменьшает возможность отложения кокса в трубах. В результате уменьшается вероятность прогара труб печи и оказывается возможным повысить тепло напряженность поверхности нагрева. Кроме того, при повышении скорости движения потока уменьшается отложение на внутренней поверхности трубы загрязнении из взвешенных механических частиц, содержащихся в сырье.
Применение более высоких скоростей движения потока сырья позволяет также уменьшить диаметр труб или обеспечить более высокую производительность печи, уменьшить число параллельных потоков.
Однако увеличение скорости приводит к росту гидравлического сопротивления потоку сырья, в связи с чем увеличиваются затраты энергии на привод загрузочного насоса, так как потеря напора, а следовательно, и расход энергии возрастают примерно пропорционально квадрату (точнее, степени 1,7-1,8) скорости движения.
Находим потерю давления водяного пара в трубах камеры конвекции.
Средняя скорость водяного пара:
[м/с],
где - плотность водяного пара при средней температуре и давлении в камере конвекции, кг/м3; dк – внутренней диаметр конвекционных труб, м; n – число потоков.
Значение критерия Рейнольдса:
, где - кинематическая вязкость водяного пара.
Общая длина труб на прямом участке:
[м].
Коэффициент гидравлического трения:
.
Потери давления на трение:
.
Потери давления на местные сопротивления:
,
где
Общая потеря давления:
[кПа].
Расчет потери давления водяного пара в камере радиации
Средняя скорость водяного пара в трубах радиационной камеры составляет:
м/с,
где - плотность водяного пара при средней температуре и давлении в камере конвекции, кг/м3; dр – внутренней диаметр конвекционных труб, м; n – число потоков.
Другие рефераты на тему «Производство и технологии»:
Поиск рефератов
Последние рефераты раздела
- Технологическая революция в современном мире и социальные последствия
- Поверочная установка. Проблемы при разработке и эксплуатации
- Пружинные стали
- Процесс создания IDEFO-модели
- Получение биметаллических заготовок центробежным способом
- Получение и исследование биоактивных композиций на основе полиэтилена высокой плотности и крахмала
- Получение титана из руды