Математическая модель процесса вытяжки трубчатой заготовки

(35)

где eij - компоненты тензора деформации.

Если интенсивность деформации какого - либо конечного элемента превысила текущий предел упругости по деформациям , то этот элемент переходит из упругого в пластическое состояние. Если материал упрочняется при пластич

еском деформировании, то соответствующая пределу упругости деформация εе увеличивается на величину Deе (Рис. 7):

(36)

Вычисление предела упругости по деформациям , достигнутого на шаге k определяется суммированием:

.(37)

Имеется в виду, что в упругой области предел упругости не изменяется, его приращения не вычисляются и равны нулю.

Накопленная пластическая деформация определяется разностью интенсивностей полной деформации ei и деформации ee, соответствующей пределу упругости:

(38)

Излагаемые в дальнейшем итерационные методы для достижения удовлетворительной сходимости требуют соблюдения непрерывности и гладкости кривой упрочнения. Поэтому в конце упругого участка кривой упрочнения введён нелинейно упругий участок, на котором модуль упрочнения вычисляется по формуле:

,(39)

где - интенсивность деформации, соответствующая пределу пропорциональности.

Соотношение (39) выражает пропорциональное изменение модуля упрочнения при переходе от упругого состояния к пластическому. Предел упругости по напряжениям в этом случае будет определяться соотношением

,(40)

где eеp – деформация в области нелинейной упругости:

.

Вектор приращений компонент тензора напряжения на шаге k в пластическом состоянии определяется по приращениям компонент деформации:

.(41)

Вектор компонент напряжения на шаге k в упругом и пластическом состоянии суммируется по приращениям:

.(42)

Интенсивность напряжений определяется по компонентам тензора напряжения sij:

.(43)

Рис. 2. Изменение предела упругости по деформациям при упрочнении

Если интенсивность деформации уменьшилась:

,(44)

то материал разгружается и переходит в упругое состояние. При нарушении неравенства (2.44) вновь происходит переход элемента в пластическое состояние.

5. Оценка повреждаемости заготовок

Для оценки деформируемости и прогнозирования разрушения заготовок в процессах обработки давлением получила развитие феноменологическая теория разрушения, использование которой основано на полученных опытным путем диаграммах пластичности и информации о напряжённо-деформированном состоянии в процессах обработки металлов давлением.

Оценку деформируемости заготовок, а также расчёт предельных технологических параметров проводят с помощью деформационных критериев, в основу которых положены ограничения, накладываемые на деформации. При этом для процессов, сопровождающихся монотонным, но сложным деформированием, в качестве меры повреждений принимают обычно некоторую скалярную характеристику.

Если влиянием истории деформирования пренебречь, то можно использовать критерий Смирнова-Аляева:

(45)

Либо, нормируя на единицу, получим меру повреждений y:

(46)

где ep(h) - предельная деформация в момент появления первых трещин, обнаруживаемых визуально; h - показатель напряжённого состояния:

(47)

s - среднее нормальное напряжение; si – интенсивность напряжений.

Для учёта влияния истории деформирования и использования соотношения (47) для простого нагружения, примем за меру повреждений y выражение (критерий Колмогорова):

,(48)

где - степень деформации к рассматриваемому моменту; - предельная деформация, определяемая по диаграммам пластичности соответствующих материалов.

Добавление в конечно-элементную модель критерия деформируемости позволило проводить контроль на разрушение заготовки во время деформирования, а также прогнозировать состояние готового изделия.

6. Взаимодействие заготовки с инструментом

Заготовка представляет собой совокупность узлов, связанных между собой конечно-элементной сеткой. Далее “узлами” будут называться узлы конечно–элементной сетки заготовки. Поведение узлов описывается соотношениями МКЭ. Инструмент является абсолютно жёстким телом, ограниченным непроницаемыми для узлов заготовки границами. Границы инструмента аппроксимируются прямолинейными и радиусными участками, состыкованными друг с другом в единую поверхность. В дальнейшем под именем “граница” будет пониматься граница инструмента. Инструмент может быть неподвижным и подвижным. Для адекватного описания технологических процессов штамповочного производства математическая модель позволяет использовать один подвижный инструмент и несколько неподвижных (например, матрица и оправка).

Неподвижный инструмент зафиксирован в пространстве. В случае попадания узла заготовки на границу такого инструмента на его (узла) перемещения накладываются ограничения – граничные условия, такие, что узел может двигаться только вдоль границы или от неё. Математически эта модель реализуется следующим образом.

В точке касания узла границы вычисляется угол наклона границы. В осесимметричной задаче горизонталь параллельна радиальной оси, а вертикаль – оси симметрии тела. Если граница в этой точке параллельна осевому направлению, то узлу запрещаются радиальные перемещения. Если же граница параллельна радиальному направлению, то узлу запрещаются осевые перемещения. В случае с наклонной границей устанавливается связь между радиальной и осевой степенями свободы узла:

,(49)

где r – радиальная степень свободы; z – осевая; k – тангенс угла наклона границы.

В матричном представлении это означает, что в матрицу жёсткости добавляется дополнительная строка с единицей на позиции, соответствующей номеру запрещённой степени свободы. Для наклонной границы используется соотношение:

Страница:  1  2  3  4 


Другие рефераты на тему «Производство и технологии»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы