Мутации структуры белковоподобного сополимера. Компьютерное моделирование
2.3. Мотивы укладки цепи в белковых молекулах
Третичная структура белка – это расположение всех атомов в пространстве. Для каждого белка третичная структура достаточно специфична и выявить общую тенденцию построения белковой молекулы достаточно сложно на этом уровне организации. Поэтому постараемся выяснить лишь общие моменты построения, то есть расположение отдельных частей белковой
молекулы. В основном нас интересуют глобулярные белки. Это наиболее изученные молекулы, и когда говорят о строении белка, в основном подразумевают их.
Рассмотрим некоторые особенности строения глобулярных белков. [18]
1. Глобулярные белки образуют достаточно компактную глобулу. Структура глобулы очень плотная и строго организована. В этом смысле белковая молекула очень похожа на кристалл. Так говоря словами Шрёдингера, белковая структура – это трёхмерный «апериодический кристалл».
2. Ядро белковой глобулы состоит из неполярных аминокислотных остатков. В образовании такой структуры большую роль играют гидрофобные взаимодействия. Они имеют энтропийную природу. Так при введении в воду неполярной группы происходит упорядочение молекул воды на поверхности раздела, что приводит к снижению энтропии системы. Обычно ядро образуют b - слои. При этом боковые группы аминокислот прячутся внутри, образуя «каплю масла». Преимущественное расположение вторичных структур внутри глобулы связано с возможностью образования водородных связей между аминокислотными остатками. Неупорядочным структурам цепи выгоднее находиться на поверхности, где аминокислотные остатки образуют водородные связи с водой.
3. Полярные и заряженные аминокислотные остатки преимущественно располагаются на поверхности белковой глобулы. Это объясняется во – первых резким повышением свободной энергии при введении заряда во внутрь глобулы (диэлектрическая постоянная белка на много меньше диэлектрической постоянной воды),
4. Во – вторых возможностью образованию связей с молекулами воды.
5. Это особенность связана с первичной структурой белковой цепи. Плотной и стабильной глобуле соответствует достаточно большое количество первичных структур. Конечно можно придумать первичные структуры, которым будут соответствовать очень стабильная структура ( стабильность выше, чем у других глобулярных структур), но их будет немного. То есть в природе заложена определённая вариативность первичной структуры. Важно, чтобы глобула была не только стабильной, но и ей соответствовало достаточное количество последовательностей цепи.
Отметим ещё некоторые особенности денатурации белковой молекулы.
Переход глобула - клубок описывается как фазовый переход первого рода, то есть сходен с плавлением кристалла. Это очень важный момент в физике белка. Так например клубок – глобула для гибкоцепных полимеров происходит плавно и описывается как фазовый переход второго рода.
Подобное поведение белка говорит о кооперативности перехода. Это значит, что разрушение части белковой молекулы ведёт к разрушению остальных связей, поддерживающих нативную структуру. Поэтому такой переход осуществляется в небольшом температурном интервале. Это отражается в резком повышении свободной энергии при повышении температуры, а также в узком пике зависимости теплоёмкости от температуры.
Затронем некоторые моменты строения мембранных белков. Эти белки встроены в мембрану клетки и выполняют функцию пропускания веществ через мембрану и могут участвовать в окислении органических веществ. Их включение в липидный бислой отражается в следующих мотивах строения.
1. Гидрофобные аминокислотные остатки расположены в середине белковой молекулы, подобно гамбургеру. То есть прослойка образована из неполярных остатков.
2. Гидрофильные и полярные остатки образуют полярные опушки с обеих сторон, взаимодействуя с полярной средой внутри и снаружи клетки.
Такая особенность строения мембранных белков позволяет максимально эффективно удерживаться в мембране клетки.
Понимание общих черт строения белков необходимо для создания адекватных моделей. Основные мотивы строения закладываются в математические модели и служат базой для построения структур белков.
2.4. Методы анализа белковых структур
В настоящее время не вызывает сомнения тот факт, что первичная структура белка определяет третичную. Поэтому возникает проблема предсказания пространственной структуры по аминокислотной последовательности. Основной метод – рентгенострруктурный анализ достаточно трудоёмок и поэтому с помощью него нельзя определить все пространственные структуры белка. Так при помощи этого метода определено всего несколько процентов пространственных структур белка. Поэтому для определения третичной структуры используют другие экспериментальные методы, а также мощный набор теоретических подходов. Рассмотрим некоторые математические подходы в решении этой задачи.
2.4.1. Определение гомологии первичных структур
Этот метод применим не только к белкам, но и к нуклеиновым кислотам. Разработано множество программ, ищущих гомологии. Все они строят выравнивание (alignment) последовательностей, добиваясь наибольшего сходства между ними. При этом за повышение сходства часто приходится платить "разрывом" последовательностей.
Разные программы по-разному оценивают, чего стоит совпадение остатков, чего — сходство, чего — несовпадение, чего — начало разрыва, чего — каждый дополнительный остаток в разрыве. Все эти оценки оптимизируются авторами так, чтобы удовлетворительно выделять белки, сходство которых уже известно из других данных, и потом "зашиваются" в программу. Поэтому конечный результат может варьироваться.
При установлении структуры "нового" белка по его гомологии с уже изученным надо ясно отдавать себе отчет, что сходство пространственных структур может не распространяться на районы, где последовательности сильно разошлись. В основном это районы петель, нерегулярных конформаций белковой цепи. Здесь, с весьма переменным пока успехом, приходится прибегать к конформационным расчетам и другим методам гомологического моделирования.
2.4.2. Нахождение вторичной структуры
Зная вклады отдельных взаимодействий в стабильность a-спирали, мы можем рассчитать свободную энергию спирализации любого участка цепи, а следовательно — и Больцмановскую вероятность образования спирали в любом месте полипептидной цепи, еще не свернувшейся в глобулу. Суммируя и усредняя эти вероятности, мы можем рассчитать и среднюю спиральность такого "несвернутого" полипептида. Потом результат можно сравнить с опытными данными — например, с КД спектрами.
Переходя к расчету и предсказанию вторичной структуры белков, глобулярных белков, необходимо учесть, что здесь к взаимодействиям, существующим в несвернутых цепях, добавляется взаимодействие каждого участка цепи с глобулой, строения которой мы не знаем. Точнее, мы не знаем ее детального строения, но знаем, что участки цепи как-то примыкают к гидрофобному ядру белка. В простейшем приближении взаимодействие с ядром можно аппроксимировать взаимодействием с "гидрофобным озером", на котором плавает белковая цепь.
Другие рефераты на тему «Химия»:
- Исследование структуры тонких полисилоксановых пленок, полученных в плазме разряда, при низких температурах
- Разработка энергосберегающих технологий процесса ректификации продуктов синтеза хлорбензола
- Химические свойства альдегидов и кетонов. Реакции окисления и восстановления
- Расчет конденсатора-холодильника паров бинарной смеси метанол-вода
- Очистка воды на ионитных фильтрах