Мутации структуры белковоподобного сополимера. Компьютерное моделирование
План
1. Введение
2. Литературный обзор
2.1. Механическая модель молекулы
2.2. Методы компьютерного моделирования полимеров. Метод Монте Карло. Метод Молекулярной динамики
2.2.1 Основные подходы к математическому моделированию макромолекул
2.2.2. Методы молекулярной динамики (МД)
2.2.3. Метод Монте-Карло (МК)
2.2.4. Особенности компьютерного
эксперимента
2.2.5. Решёточные и континуальные модели
2.2.6. Трудности машинного эксперимента
Периодические граничные условия
2.2.7. Модернизированные методы компьютерного моделирования
2.3. Мотивы укладки цепи в белковых молекулах
2.4. Методы анализа белковых структур
2.4.1. Определение гомологии первичных структур
2.4.2. Нахождение вторичной структуры
2.4.3.Метод протягивания
2.4.4. Дизайн белковых молекул
2.5. Конформационно-зависимый дизайн последовательностей цепи
2.5.1. НР – сополимеры, «приспособленные к адсорбции»
2.5.2. Молекулярные диспергаторы
2.5.3. Моделирование мембранных белков
2.7. Белковоподобные сополимеры. Дизайн, структура, свойства
2.8. Оптимизация последовательностей белковоподобных сополимеров глобулярных белков
2.9. Дальнодействующие корреляции в белковоподобных сополимерах
3. Экспериментальная часть
3.1. Модель и метод моделирования
3.2.Модель молекулярной эволюции
3.3. Методы анализа
4. Результаты и обсуждение
5. Заключение
6. Список литературы
1. Введение
Концепция эволюции является одним из краеугольных камней в современных естественных науках: в космологии обсуждается эволюция вселенной, в геологии эволюция Земли, в биологии эволюция живого мира. Эту идею можно использовать и в полимерной науке [1,2]. Соответствующие положения этой проблемы достаточно ясны. В настоящее время биополимеры ( белки, ДНК, РНК) обладают сложной первичной структурой (последовательность мономерных звеньев ) которая определяет их функции и структуру ( в том числе и третичную структуру глобулярных белков). Поэтому эти последовательности ( 20-ти буквенный алфавит в случае белков и 4-х буквенный в случае ДНК и РНК) должны значительно отличаться от случайных и часто проявляют значительные корреляции на различных массштабах. Другими словами, естественно ожидать, что количество информации в таких последовательностях относительно высоко сравнительно высоко по сравнению со случайными (ДНК содержит всю генетическую информацию).
С другой стороны, на начальном этапе до биологической эволюции могли образовываться только случайные последовательности или последовательности с короткодействующими корреляциями. Можно добавить, что по ходу молекулярной эволюции первичные структуры сополимеров становились всё сложнее и сложнее, пока не достигли уровня сложности современных биополимеров. Исследование различных возможностей эволюции последовательностей сополимеров является областью, где концепцию эволюции можно использовать в контексте науки оп полимерах.
Стоит заметить, что, так как количество информации последовательности можно определить количественно, то весь процесс эволюции биополимерных последовательностей может быть точно определён в математических терминах, которые не всегда применимы для других случаях эволюции.
С другой стороны, сформулированные фундаментальные проблемы чрезвычайно сложны из-за отсутствия прямой информации о ранней добиологической эволюции. Поэтому особый интерес представляют модельные системы эволюции последовательностей, которые показывают различные возможности появления сложной статистики и дальнодействующих корреляций в последовательностях. Так как при помощи случайных мутаций невозможно увеличить количество информации последовательности, то такие модельные системы должны принимать во внимание связь между конформацией полимерной цепи и эволюцией последовательности.
Один из вариантов конформационно-зависимого дизайна сополимеров, который ведёт к статистически достаточно сложным последовательностям рассмотрен в статьях [3,4,5]. Подход заключается в модифицировании поверхности глобулы. Звеньям, находящимся на поверхности присваивается индекс Р (гидрофильные звенья), а находящимся в ядре глобулы – Н (гидрофобные). Конформация полученного сополимера зависит от Н-Н, Н-Р и Р-Р взаимодействий.
Такие сополимеры были названы в статье [3] белковоподобными сополимерами, так как они отражают одну из важных особенностей реальных глобулярных белков: возможность образования плотного гидрофобного ядра, стабилизированным гидрофильными петлями, в глобулярной конформации. Благодаря этой особенности эти белки в глобулярной конформации.не выпадают в осадок в растворе Следует отметить, что образование гидрофильных звеньев является только одним из свойств белков, поэтому белковоподобные сополимеры не имеют общего с реальными белками. Можно говорить только о сходстве белковоподобных сополимеров и сополимеров, появляющиеся на ранних этапах эволюции.
Были предложены простые различные компьютерные модели, описывающие эволюцию сополимерных последовательностей. Однако, цель большинства этих моделей – решить различные модели физики белка, т.е. проблему конструирования специфической аминокислотной последовательности, которая будет термодинамически стабильна в третичной глобулярной структуре и будет способна быстро сворачиваться в эту конформацию при данной температуре.[6,7] Мы предлагаем другой подход. Именно:
1. Мы предлагаем модельную систему молекулярной эволюции последовательностей сополимеров, в которой возможны две основные возможности: восходящая и нисходящая ветви эволюции ( в терминах количества информации последовательности), зависящей от параметров взаимодействий между звеньями.
2. Мы исследовали применимость теоретико-информационных характеристик для описания молекулярной эволюции.
2. Литературный обзор
2.1. Механическая модель молекулы
Под моделью системы понимают выбор правил, описывающих взаимодействие частиц между собой и/или с внешними полями, то есть в формулировке вида и способа вычисления функции потенциальной энергии.[8]
В ряде задач физической химии удобно рассматривать молекулу не как электронно-ядерную систему, а как систему взаимодействующих атомов (механическая модель молекулы).
Механическая модель не противоречит квантовой механике, а при некоторых ограничениях (среди них, прежде всего, следует упомянуть теорему Борна-Оппергеймера) может быть выведена из неё.
|