Мутации структуры белковоподобного сополимера. Компьютерное моделирование

3. Первичная структура случайно блочного сополимера характеризуется Пуасоновским распределением f(x) = e-l/x!, (x =0, 1, ., l > 0), где l = L. Также NР = NН = N/2. Начальное состояние системы – гомополимерная глобула. После наступления равновесия в течении 4´106 шагов рассчитывались характеристики системы.

Все результаты представлены для достаточно длинной цепи, состоящая из Т = 51

2 звеньев. Таким образом, для гетерополимера NН = NР = 256.

В приложении 1 представлены типичные распределения Р и Н звеньев вдоль цепи для белковоподобных, случайных и случайноблочных сополимеров. При сравнении первичных структур случайных и белковоподобных сополимеров можно видеть, средняя длина Р и Н блоков у протеиноподобных больше. С другой стороны, случайноблочные соплимеры, имеющие ту же среднюю длину Р и Н блоков как у белковоподобных, имеют другое распределение этих блоков вдоль цепи. Главная особенность белковоподобных сополимеров – это наличие в первичной структуре достаточно длинных однородных Р и Н последовательностей. Таким образом, первичную структуру этих полимеров можно охарактеризовать как ²случайная с дальнодействующими корреляциями.

Сравним особенности перехода клубок-глобула для протеиноподобных сополимеров по сравнению с со случайными, имеющие тот же А/В состав.

Во время счёта вычислялись средняя удельная энергия <U/N>, а также средний размер агрегата глобулярного ядра <m>.

В приложении 2 представлены зависимости <U/N> и <m> от температуры для трёх типов сополимеров. В приложении 3 представлены производные по температуре d<U/N>/dT и d<m>/dT , полученные численным дифференцированием соответствующих кривых, представленных в приложении 2. Следует отметить, что производная d<U/N>/dT представляет собой удельную теплоту на одно мономерное звено и характеризует флуктуации внутренней энергии U в состоянии равновесия. Во всех случаях можно наблюдать переход из глобулярного состояния в клубок в небольшом температурном интервале, кривая d<m>/dT от Т имеет ярко выраженный пик. Однако можно видеть, что переход клубок-глобула для белковоподобных сополимеров находится при более высокой температуре и более резкий, чем для случайных и случайноблочных сополимеров. Таким образом можно сделать вывод, что специфическая первичная структура, которую протеиноподобные сополимеры ²наследуют² от глобулярных белков, отражается в сдвиге перехода кубок-глобула в сторону больших температур и делает глобулу более стабильной по сравнению с глобулами, образованными случайными сополимерами.

Рассмотрим морфологию гетерополимерных глобул. В приложении 4 представлены типичные мгновенные фотографии глобулярных структур, полученные для трёх типов сополимеров при низкой температуре Т = 1.5 при состоянии равновесия. Можно видеть, что глобулы белковоподобных сополимеров имеют специфичную мицеллоподобную структуру, состоящую из плотного ядра из гидрофобных звеньев Н и длинных гидрофильных петель из гидрофильных звеньев Р. С другой стороны глобулы случайных сополимеров имеют большое рыхлое ядро и короткие поверхностные петли.

Также изучалась кинетика перехода клубок-глобула. Было показано, что для белковоподобных сополимеров этот переход происходит быстрее, чем для случайных.

2.8. Оптимизация последовательностей белковоподобных сополимеров глобулярных белков

Один из методов получения белковоподобных сополимеров заключается в следующем. Начальная конфигурация – это гомополимерная глобула (Состоит из Н – звеньев). Затем выьирается несколько мономерных звеньев, имеющих наибольшее число контактов с растворителем, и им присваивается индекс Р ( eРР < eНН). Следующий шаг заключается в релаксации полученной структуры. Затем модификации подвергаются следующие звенья. Такая процедура повторяется несколько раз. На рис. 2.8. можно видеть схематичное представление такой процедуры.

Показано, что подобная схема дизайна более эффективна, чем процедура однократного модифицирования поверхности. Также следует сказать, что такая процедура дизайна наиболее близка к реальному процессу, чем другие схемы, так как происходит постепенное взаимодействие с реагентом в растворе и диффузия звеньев цепи в растворитель.

Рис. 2.8. Схематичное представление итеративной схемы дизайна.[19]

Другая схема дизайна реализуется методом Монте Карло. Начальная структура – белковоподобный сополимер. Затем выбираются два звена разных типов и пытаемся поменять их. Согласно схеме Метрополиса, вероятность того, что такой обмен будет иметь место пропорционален ехр (DЕ/RT). После этого система релаксирует некоторое время. Такую схему повторяют много раз. Таким образом подбирается структура белковоподобного сополимера с наименьшей энергией.

Рис. 2.9. Пробный шаг дизайна последовательности: выбираются два мономера различного типа и производится попытка поменять их тип. Вероятность обмена вычисляется согласно схеме Метраполиса. [19]

2.9. Дальнодействующие корреляции в белковоподобных сополимерах

Рассмотрим корреляции между Н и Р звеньями вдоль белковоподобных последовательностей, которые сконструированы по схеме показанной на рис. .В самом деле, белковоподобные последовательности не являются случайными, такие корреляции должны существовать и важно знать, как изучить их исходя из одномерной первичной последовательности, без моделирования складывания цепи. Было показано при помощи как компьютерного моделирования, так и точных аналитических вычислений, что такие корреляции действительно существуют и кроме того имеют дальнодействующий характер.[21] Более точно они принадлежат к так называемой статистике полёта Леви. Это значит, что эффект памяти нативной конформации выражается через специфичные и нетривиальные статистики первичных белковоподобных последовательностей.

Анализ таких корреляций можно выполнить следующим образом. Нужно выбрать "окно" длинны L и двигать его вдоль сконструированной НР- последовательности. Число Н – звеньев в этом окне (hL)i является случайной переменной, зависящей от позиции i окна вдоль последовательности. Эта случайная переменная имеет определённое распределение. Её среднее <hL> определяется по всем по всей последовательности. Достаточно легко вычислить дисперсию этого распределения. [19]

DL ~ < [(hL)I - <hl>]2 >1/2 (2 .17)

Для полностью случайной НР – последовательности значение DL имеет зависимость от ширины окна L как L1/2. Зависимость DL ~ La, при a > ½ , явно показывает на существование дальнодействующих корреляций. В приложении 5 показана дисперсия DL для двух процедур модификации поверхности: ожнократное изменение поверхности и итеративный метод для N = 1024. Можно видеть , что для последовательности, полученной итеративным методом, кривая имеет больший угол наклона. Это означает, что дальнодействующие корреляции являются даже больше для этой последовательности, чем полученной первоначальным методом, описанным в статье [3]. Такое поведение DL может быть объяснено большей степенью блочности последовательностей, полученных при помощи итеративного алгоритма. В этом случае значение длины блока составляет примерно 10 звеньев, в то время как для не модифицированного первоначального метода она составляет около 8 звеньев. Можно легко понять такие изменения первичной структуры на количественном уровне: модифицированное мономерное звено становится более гидрофильным, поэтому существует тенденция к вытягиванию петель из глобулы. Это означает, что что следующие модификации будут более вероятно происходить в этой петле, что будет вести к увеличению длины блока. Сильные флуктуации величины DL при больших значениях L происходит из-за конечных размеров последовательностей. Самая верхняя кривая с тангенсом угла наклона равным 1 показывает поведение величины DL для максимально "неслучайной" последовательности (например для диблочного сополимера).

Страница:  1  2  3  4  5  6  7  8  9  10  11  12  13 


Другие рефераты на тему «Химия»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы