Эконометрический анализ основных числовых характеристик

Введем обозначения: Х1 – удельный вес пашни в с/х угодьях, %;

Х2 – удельный вес лугов и пастбищ, %

У – уровень убыточности продукции животноводства, %

Найдем основные числовые характеристики:

1. Объем выборки – суммарное количество наблюдений: n = 15.

2. Минимальное значение х1 – min х1 = 68,1%

максимальное значение х1 – max х1 = 94,7%

Значит, удельный вес пашни в

с/х угодьях изменяется от 68,1% до 94,7%.

3. min х2 = 9,2%, max х2 = 28,7%.

Значит, удельный вес лугов и пастбищ изменяется от 9,2%, до 28,7%.

4. min у = 15%, max у = 45,6%.

Значит, уровень убыточности продукции животноводства изменяется от 15%% до 45,6%.

5. Среднее значение вычисляется по формуле

Среднее значение удельного веса пашни в с/х угодьях и составляет x1=80,98%

Среднее значение удельного веса лугов и пастбищ составляет х2 = 17,02%

Среднее значение уровня убыточности продукции животноводства составляет у = 28,2%.

6. Дисперсия вычисляется по формуле

Дисперсия по х1: D(х1) = 58,83;

по х2: D(х2) = 42,45;

по у: D(у) = 92,96.

7. Среднеквадратичное отклонение вычисляется по формуле:

σх1= 7,67 – значит, среднее отклонение удельного веса пашни в с/х угодьях от среднего значения составляет 7,67%

σх2= 6,52 – значит, среднее отклонение удельного веса лугов и пастбищ от среднего значения составляет 6,52%

σу= 9,642 – значит, среднее отклонение уровня убыточности продукции животноводства от среднего значения составляет 9,642%.

Эконометрический анализ

По таблице строим корреляционное поле (диаграмму рассеивания). Нанесем точки хi, уi на координатную плоскость.

Точка с координатами (х; у) = (80,98; 17,15) называется центром рассеивания.

По виду корреляционного поля можно предположить, что зависимость между х и у линейная.

Для определения линейной связи найдем коэффициент корреляции.

r =0,776111538

Т.к. в данном случае коэффициент корреляции 0,6 ≤| r | ≤ 0,9, то линейная связь между х и у достаточная.

Попытаемся описать связь между х и у зависимостью у = b0 + b1x

Параметры b0 и b1 находим по методу наименьших квадратов.

b1 = rху σу/ σх =-0,6520, b0 = у – b1x = 69,9498

Т.к. b1<0, то зависимость между х и у обратная. Т.е. с ростом удельного веса пашни в с/х угодьях, уровень убыточности продукции животноводства уменьшается.

Проверим значимость коэффициентов bi. Значимость может быть проверена с помощью критерия Стьюдента.

Для коэффициента b0:

=5,854852846

Значимость t наблюдаемого: α·tнабл = 0,0001, т.е. 0,01%<5%, значит, коэффициент b0 статистически значим.

Для коэффициента b1:

= -4,437566168

Значимость t наблюдаемого: α·tнабл = 0,0010, т.е. 0,1%<5%,

Значит, коэффициент b1 статистически значим.

Получим модель зависимости уровня убыточности продукции животноводства от удельного веса пашни в с/х угодьях и удельного веса лугов и пастбищ.

у = -0,652х + 69,9498.

После того, как была построена модель, проверяем её на адекватность.

Разброс данных, объясняемый регрессией:

SSP = 350,083702

Остатки необъясняемые – разброс:

SSЕ = 231,1136313

Общий разброс данных:

SSY = 581,1973333

Для анализа общего качества модели найдем коэффициент детерминации.

R2 = SSR/ SSY = 0,57176059

Разброс данных объясняется: линейной моделью на 57,26% и на 42,74% случайными ошибками ((1 – R2)·100%).

Качество модели плохое.

Проверим с помощью критерия Фишера. Для проверки найдем величины:

MSR = SSR / R1 = 350,083702 и MSЕ = SSЕ / R2 = 17,77797164.

Вычисляем k1 = 1 и k2 = 14.

Находим наблюдаемое значение критерия Фишера.

Fнабл = MSR / MSE = 19,6919935.

Значимость этого значения: α = 0,000669742, т.е. процент ошибки равен ≈0,067% < 5%.

Следовательно, модель у = -0,652х + 69,9498 считается адекватной с гарантией более 95%.

Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза.

x [xmin, xmax]; хпр = 88

Рассчитываем прогнозируемые значения по модели для всех точек выборки и для точки прогноза.

у(х=88) = у = -0,652х + 69,9498= 12,577

Найдем полуширину доверительного интервала в каждой точке и в точке прогноза.

,

где σе – среднеквадратическое отклонение выборочных точек от линии регрессии

= 4,216393

tγ – критическая точка распределения Стьюдента для надежности

γ =0,95 R = 13;

n = 15 – объем выборки;

сумма знаменателя – ,

где D(x) – дисперсия выборки,

хпр – точка прогноза.

Прогнозируемый доверительный интервал для любой точки х:

, где δ для точки прогноза – δ (х=88) = 9,668, т.е. доверительный интервал для хпр составляет от 2,909 до 22,244 с гарантией 95%.

Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.

Т.е. при удельном весе пашни в с/х угодьях 1,458%. уровень убыточности продукции животноводства составит от 2,909% до 22,244%.

Найдем эластичность. Для линейной модели эластичность Ех вычисляется по формуле:

Коэффициент эластичности показывает, что при изменении удельного веса пашни в с/х угодьях на 1% уровень убыточности продукции животноводства уменьшится на 4,593%.

Эконометрический анализ

По таблице строим корреляционное поле (диаграмму рассеивания). Нанесем точки хi, уi на координатную плоскость.

Точка с координатами (х; у) = (17,02; 28,2) называется центром рассеивания.

По виду корреляционного поля можно предположить, что зависимость между х и у нелинейная.

Попытаемся описать связь между х и у зависимостью:

y = a ln x + b.

Перейдем к линейной модели. Делаем линеаризующую подстановку:

U= ln x; V = y.

Для этих данных строим линейную модель:

V = b0 + b1U.

Для определения линейной связи найдем коэффициент корреляции.

r =0,864

Т.к. в данном случае коэффициент корреляции | r | > 0,9, то линейная связь между U и V сильная.

Страница:  1  2  3 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы