Эконометрический анализ основных числовых характеристик
Попытаемся описать связь между U и V зависимостью
V = b0 + b1U.
Параметры b0 и b1 находим по методу наименьших квадратов.
b1 = r U V σ V / σ U = 370.76, b0 = V – b1 U = 3.53.
Т.к. b1 > 0, то зависимость между U и V прямая. Т.е. с ростом удельного веса лугов и пастбищ, уровень убыточности продукции животноводства повышается.
Проверим значимость коэффициентов bi.
Значимость может быть проверена с помощью критерия Стьюдента.
Для коэффициента b0:
=0,845
Значимость t наблюдаемого: α·tнабл = 0,413221639, т.е. 41%>5%,
Значит, коэффициент b0 статистически не значим.
Для коэффициента b1:
=6,2
Значимость t наблюдаемого: α·tнабл = 3,23039E‑05, т.е. ≈0%<5%,
Значит, коэффициент b1 статистически значим.
Получим модель зависимости уровня убыточности продукции животноводства от удельного веса лугов и пастбищ.
V = 370,76U +3,53.
После того, как была построена модель, проверяем её на адекватность.
Разброс данных, объясняемый регрессией:
SSP = 972,42
Остатки необъясняемые – разброс:
SSЕ = 329,1
Общий разброс данных:
SSY = 1301,51
Для анализа общего качества модели найдем коэффициент детерминации.
R2 = SSR/ SSY = 0.747
Разброс данных объясняется: линейной моделью на 74,7% и на 25,3% случайными ошибками ((1 – R2)·100%).
Качество модели хорошее.
Проверим с помощью критерия Фишера. Для проверки найдем величины: MSR = SSR / R1 = 972,42 и MSЕ = SSЕ / R2 = 25,3.
Вычисляем k1 = 1 и k2 = 13.
Находим наблюдаемое значение критерия Фишера.
Fнабл = MSR / MSE = 38.41.
Значимость этого значения: α = 3,23Е‑05, т.е. процент ошибки равен ≈0% < 5%.
Следовательно, модель V = 370,76U +3,53. считается адекватной с гарантией более 95%.
Т.к. линейная модель адекватна, то и соответствующая нелинейная модель то же адекватна. Находим параметры исходной нелинейной модели a и b. Вид нелинейной функции:
y = 370,76/x +3,53.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза.
x [xmin, xmax];
хпр = 17,02, соответственно Uпр= 1/17,02 = 0,06
Рассчитываем прогнозируемые значения по модели для всех точек выборки и для точки прогноза.
V(х=17,02) = 370,76U +3,53. = 25,32,
у(х=17,02) = 370,76/x +3,53 = 25,32.
Т.к. y(x) = V(U), то полуширина доверительного интервала и доверительный интервал будет равен как для y так и для V.
Найдем полуширину доверительного интервала в каждой точке и в точке прогноза.
,
Прогнозируемый доверительный интервал для любой точки х:
, где δ для точки прогноза – δ (х=17,02) = 11,27 т.е. доверительный интервал для хпр составляет от 8,50 до 12,87 с гарантией 95%.
Совокупность доверительных интервалов для всех х из области прогнозов образует доверительную область.
Т.е. при удельном весе лугов и пастбищ 17,02% уровень убыточности продукции животноводства составит от 14,05% до 36,59%.
Найдем эластичность. Для линейной модели эластичность Ех вычисляется по формуле:
Коэффициент эластичности показывает, что при изменении удельного веса лугов и пастбищ на 1% уровень убыточности продукции животноводства изменяется на 0,86%.
Эконометрический анализ
Прежде, чем строить модель, проверим факторы на коллинеарность. По исходным данным строим корреляционную матрицу. Коэффициент корреляции между х1 и х2 равен:
rх1х2 =-0,79 < 0,95, следовательно х1 и х2 неколлинеарны.
Определим связаны ли х1, х2 и у между собой. Для определения тесноты линейной связи найдем коэффициент корреляции.
r = 0,92
Попытаемся описать связь между х1, х2 и у зависимостью
у = b0 + b1∙х1 + b2 ∙х2
Параметры b0, b1 и b2 находим по методу наименьших квадратов.
b0 = -19.995, b1 = 0.72, b2 = -0.6
Проверим значимость коэффициентов bi. Значимость может быть проверена с помощью критерия Стьюдента.
Для коэффициента b0:
= -0,87
Значимость t наблюдаемого: α·tнабл = 0,40, т.е. 40% > 5%,
Значит, коэффициент b0 статистически не значим.
Для коэффициента b1:
= 3,04
Значимость t наблюдаемого: α·tнабл = 0,01, т.е. 1% < 5%,
Значит, коэффициент b1 статистически значим.
Для коэффициента b2:
= -2,11
Значимость t наблюдаемого: α·tнабл = 0,06, т.е. 6% > 5%,
Значит, коэффициент b2 статистически не значим.
Получим модель зависимости уровня убыточности продукции животноводства от удельного веса пашни в с/х угодьях и и удельного веса лугов и пастбищ.
у = -19,995 + 0,72∙х1 – 0,6∙х2
После того, как была построена модель, проверяем её на адекватность.
Разброс данных, объясняемый регрессией:
SSP = 1090,3
Остатки необъясняемые – разброс:
SSЕ = 211,17
Общий разброс данных:
SSY = 1301,5
Для анализа общего качества модели найдем коэффициент детерминации.
R2 = SSR/ SSY = 0.84
Разброс данных объясняется: линейной моделью на 84% и на 16% случайными ошибками ((1 – R2)·100%).
Качество модели хорошее.
Проверим с помощью критерия Фишера. Для проверки найдем величины: MSR = SSR / R1 = 545,17 и MSЕ = SSЕ / R2 = 17,6.
Вычисляем k1 = 2 и k2 = 12.
Находим наблюдаемое значение критерия Фишера.
Fнабл = MSR / MSE = 30.98.
Значимость этого значения: α = 1,82E‑05, т.е. процент ошибки равен ≈0% < 5%.
Следовательно, модель
у = -19,995 + 0,72∙х1 – 0,6 ∙х2 – считается адекватной с гарантией более 95%.
Найдем прогноз на основании линейной регрессии. Выберем произвольную точку из области прогноза.
X1,2 [xmin, xmax]; хпр = (80,98; 17,02)
Рассчитываем прогнозируемые значения по модели для всех точек выборки и для точки прогноза.
У(80,98;17,02) = у = -19,995 + 0,72∙80,98 – 0,6 ∙17,02=28,17
Другие рефераты на тему «Экономико-математическое моделирование»:
- Использование критерия Дарбина–Уотсона и оценка качества эконометрической модели с использованием коэффициента детерминации
- Эконометрическая модель национальной экономики Турции
- Исследование модели развития покупательского спроса для предприятия, выпускающего определенный товар
- Методы линейного программирования для решения транспортной задачи
- Мультиколлинеарность
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели