Транспортная задача
где xij количество продукции, поставляемое со склада i потребителю j, а С i j издержки (сто
имость перевозок со склада i потребителю j).
Опорный план
Решение транспортной задачи начинается с нахождения опорного плана. Для этого существуют различные способы. Например, способ северо-западного угла, способ минимальной стоимости по строке, способ минимальной стоимости по столбцу и способ минимальной стоимости таблицы. Рассмотрим простейший, так называемый способ северо-западного угла. Пояснить его проще всего будет на конкретном примере:
Условия транспортной задачи заданы транспортной таблицей.
Таблица № 1
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
А1 |
10 |
8 |
5 |
6 |
9 |
48 |
А2 |
6 |
7 |
8 |
6 |
5 |
30 |
А3 |
8 |
7 |
10 |
8 |
7 |
27 |
А4 |
7 |
5 |
4 |
6 |
8 |
20 |
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
Будем заполнять таблицу перевозками постепенно начиная с левой верхней ячейки ("северо-западного угла" таблицы). Будем рассуждать при этом следующим образом. Пункт В1 подал заявку на 18 единиц груза. Удовлетворим эту заявку за счёт запаса 48, имеющегося в пункте А1, и запишем перевозку 18 в клетке (1,1). После этого заявка пункта В1 удовлетворена, а в пункте А1 осталось ещё 30 единиц груза. Удовлетворим за счёт них заявку пункта В2 (27 единиц), запишем 27 в клетке (1,2); оставшиеся 3 единицы пункта А1 назначим пункту В3. В составе заявки пункта В3 остались неудовлетворёнными 39 единиц. Из них 30 покроем за счёт пункта А2, чем его запас будет исчерпан, и ещё 9 возьмём из пункта А3. Из оставшихся 18 единиц пункта А3 12 выделим пункту В4; оставшиеся 6 единиц назначим пункту В5, что вместе со всеми 20 единицами пункта А4 покроет его заявку. На этом распределение запасов закончено; каждый пункт назначения получил груз, согласно своей заявки. Это выражается в том, что сумма перевозок в каждой строке равна соответствующему запасу, а в столбце - заявке.
Таким образом, нами сразу же составлен план перевозок, удовлетворяющий балансовым условиям. Полученное решение является опорным решением транспортной задачи:
Таблица № 2
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
А1 |
10 18 |
8 27 |
5 3 |
6 |
9 |
48 |
А2 |
6 |
7 |
8 30 |
6 |
5 |
30 |
А3 |
8 |
7 |
10 9 |
8 12 |
7 6 |
27 |
А4 |
7 |
5 |
4 |
6 |
8 20 |
20 |
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
Составленный нами план перевозок, не является оптимальным по стоимости, так как при его построении мы совсем не учитывали стоимость перевозок Сij.
Другой способ - способ минимальной стоимости по строке - основан на том, что мы распределяем продукцию от пункта Ai не в любой из пунктов Bj, а в тот, к которому стоимость перевозки минимальна. Если в этом пункте заявка полностью удовлетворена, то мы убираем его из расчетов и находим минимальную стоимость перевозки из оставшихся пунктов Bj. Во всем остальном этот метод схож с методом северо-западного угла. В результате, опорный план, составленный способом минимальной стоимости по строке выглядит, так как показано в таблице № 3. При этом методе может получиться, что стоимости перевозок Cij и Cik от пункта Ai к пунктам Bj
и Bk равны. В этом случае, с экономической точки зрения, выгоднее распределить продукцию в тот пункт, в котором заявка больше. Так, например, в строке 2: C21 = C24, но заявка b1 больше заявки b4, поэтому 4 единицы продукции мы распределим в клетку (2,1).
Таблица № 3
ПН ПО |
В1 |
В2 |
В3 |
В4 |
В5 |
Запасы аi |
А1 |
10 |
8 |
5 42 |
6 6 |
9 |
48 |
А2 |
6 4 |
7 |
8 |
6 |
5 26 |
30 |
А3 |
8 |
7 27 |
10 |
8 |
7 0 |
27 |
А4 |
7 14 |
5 |
4 |
6 6 |
8 |
20 |
Заявки bj |
18 |
27 |
42 |
12 |
26 |
125 |
Другие рефераты на тему «Экономико-математическое моделирование»:
Поиск рефератов
Последние рефераты раздела
- Выборочные исследования в эконометрике
- Временные характеристики и функция времени. Графическое представление частотных характеристик
- Автоматизированный априорный анализ статистической совокупности в среде MS Excel
- Биматричные игры. Поиск равновесных ситуаций
- Анализ рядов распределения
- Анализ состояния финансовых рынков на основе методов нелинейной динамики
- Безработица - основные определения и измерение. Потоки, запасы, утечки, инъекции в модели