Особенности решения задач в эконометрике

Задание 1.

По 15 предприятиям, выпускающим один и тот же вид продукции известны значения двух признаков:

х - выпуск продукции, тыс. ед.;

у - затраты на производство, млн. руб.

x

y

5,3

18,4

15,1

22,0

24,2

32,3

7,1

16,4

11,0

22,2

8,5

21,7

14,5

23,6

10,2

18,5

18,6

26,1

19,7

30,2

21,3

28,6

22,1

34,0

4,1

14,2

12,0

22,1

18,3

28,2

Требуется:

4. Построить поле корреляции и сформулировать гипотезу о форме связи;

5. Построить модели:

2.1 Линейной парной регрессии;

2.2 Полулогарифмической парной регрессии;

2.3 Степенной парной регрессии; Для этого:

1. Рассчитать параметры уравнений;

2. Оценить тесноту связи с помощью коэффициента (индекса) корреляции;

3. Оценить качество модели с помощью коэффициента (индекса) детерминации и средней ошибки аппроксимации;

4. Дать с помощью среднего коэффициента эластичности сравнительную оценку силы связи фактора с результатом;

5. С помощью F-критерия Фишера оценить статистическую надежность результатов регрессионного моделирования;

3. По значениям характеристик, рассчитанных в пунктах 2-5 выбрать лучшее уравнение регрессии;

4. Используя метод Гольфрельда-Квандта проверить остатки на гетероскедастичность;

5. Рассчитать прогнозное значение результата, если прогнозное значение фактора увеличится на 5% от его среднего уровня. Для уровня значимости =0,05 определить доверительный интервал прогноза.

Решение.

1. Строим поле корреляции.

Анализируя расположение точек поля корреляции, предполагаем, что связь между признаками х и у может быть линейной, т.е. у=а+bх, или нелинейной вида: у=а+blnх, у = ахb.

Основываясь на теории изучаемой взаимосвязи, предполагаем получить зависимость у от х вида у=а+bх, т. к. затраты на производство y можно условно разделить на два вида: постоянные, не зависящие от объема производства - a, такие как арендная плата, содержание администрации и т.д.; и переменные, изменяющиеся пропорционально выпуску продукции bх, такие как расход материала, электроэнергии и т.д.

2.1 Модель линейной парной регрессии

2.1.1 Рассчитаем параметры a и b линейной регрессии у=а+bх.

Строим расчетную таблицу 1.

Таблица 1

x

y

yx

x2

y2

Аi

1

5,3

18,4

97,52

28,09

338,56

16,21

2,19

11,92

2

15,1

22,0

332,20

228,01

484,00

24,74

-2,74

12,46

3

24,2

32,3

781,66

585,64

1043,29

32,67

-0,37

1,14

4

7,1

16,4

116,44

50,41

268,96

17,77

-1,37

8,38

5

11,0

22,2

244,20

121,00

492,84

21,17

1,03

4,63

6

8,5

21,7

184,45

72,25

470,89

18,99

2,71

12,47

7

14,5

23,6

342,20

210,25

556,96

24,22

-0,62

2,62

8

10,2

18,5

188,70

104,04

342,25

20,47

-1,97

10,67

9

18,6

26,1

485,46

345,96

681,21

27,79

-1,69

6,48

10

19,7

30,2

594,94

388,09

912,04

28,75

1,45

4,81

11

21,3

28,6

609,18

453,69

817,96

30,14

-1,54

5,39

12

22,1

34,0

751,40

488,41

1156,00

30,84

3,16

9,30

13

4,1

14,2

58,22

16,81

201,64

15,16

-0,96

6,77

14

12,0

22,1

265,20

144,00

488,41

22,04

0,06

0,26

15

18,3

28,2

516,06

334,89

795,24

27,53

0,67

2,38

Σ

212,0

358,5

5567,83

3571,54

9050,25

358,50

0,00

99,69

среднее

14,133

23,900

371,189

238,103

603,350

23,90

0,00

6,65

Страница:  1  2  3  4  5  6  7  8 


Другие рефераты на тему «Экономико-математическое моделирование»:

Поиск рефератов

Последние рефераты раздела

Copyright © 2010-2024 - www.refsru.com - рефераты, курсовые и дипломные работы